Бизнес портал - StatusPro

Типы машиностроительных производств и методы работы. В современном машиностроении различают три типа производства (единичное, серийное и массовое) и два метода работы (непоточный и поточный)

Тип производства – классификационная категория, выделяемая по признакам широты номенклатуры, регулярности, стабильности и объема выпускаемых изделий. В зависимости от потребностей человека, учреждения, отрасли или государства изделия выпускаются предприятиями в различных количествах. Соответственно производства условно подразделяют на единичное, серийное или массовое.

Отнесение предприятия (завода) или цеха к тому или иному типу производства называется условным потому, что возможно одновременное существование различных типов, т.е. отдельные изделия или детали могут изготовляться в соответствии с разными принципами: одни – единичным порядком, другие – серийным или одни – массовым, другие – серийным и т.п. Так, па предприятиях тяжелого машиностроения, характеризующихся единичным производством сложных крупногабаритных изделий (например, шагающих экскаваторов), требующиеся для них в большом количестве мелкие унифицированные или стандартизированные детали могут изготовляться по принципу серийного и даже массового производства.

Под единичным (индивидуальным) производством понимают изготовление единичных экземпляров изделий по неизменным чертежам, которое не повторяется либо повторяется редко, через неопределенное время.

Отличительными особенностями единичного типа производства являются: миогономенклатурность выпускаемой продукции; отсутствие постоянного закрепления за рабочими местами определенных изделий; использование универсального оборудования, приспособлений и инструментов; размещение оборудования по однотипным группам; наличие высококвалифицированных рабочих-уииверсалов; большой объем ручных операций; высокая длительность производственного цикла и др. К нему относят выпуск экспериментальных или уникальных образцов машиностроительных изделий, любого нестандартного оборудования.

Под серийным производством понимают изготовление изделий по неизменным чертежам периодически повторяющимися партиями в течение определенного периода времени.

В зависимости от числа изделий в партии его подразделяют на: мелкосерийное, серийное и крупносерийное. Такое подразделение достаточно условно. При одном и том же числе изделий в партии, по разных размерах и сложности, производство можно отнести к разным видам. Например, изготовление 25 проходческих комбайнов для выработки месторождений калийной руды можно отнести к среднесерийному производству, 25 тяжелых транспортных самолетов "Руслан" – к крупносерийному, а 25 малогабаритных токарных станков – к мелкосерийному. Ориентировочно серийность производства определяют по табл. 1.1.

Таблица 1.1

Серийность производства

Продукцией серийного производства являются изделия, выпускаемые в значительном количестве: металлорежущие станки, насосы, компрессоры и т.д. В этом случае используют высокопроизводительное универсальное и специализированное оборудование; специализацию рабочих мест по выполнению нескольких закрепленных операций; универсальные, переналаживаемые быстродействующие приспособления; универсальный и специальный инструмент. Широко применяют станки с ЧПУ, многоцелевые станки и гибкие переналаживаемые системы (ГПС). Серийное производство также характеризуется незначительным объемом ручных операций, наличием рабочих средней квалификации, незначительной длительностью производственного цикла и др.

Под массовым производством понимают изготовление изделий по неизменным чертежам в больших количествах и в течение длительного периода времени.

Продукцией массового производства являются изделия узкой номенклатуры и стандартного типа, например автомобили, велосипеды, электродвигатели, швейные и стиральные машины, подшипники и т.п. На большинстве рабочих мест выполняют только одну закрепленную постоянно повторяющуюся операцию. Массовому производству свойственны следующие особенности: ограниченная номенклатура изделий; предметная специализация рабочих мест; расположение оборудования в последовательности выполнения операций; применение высокопроизводительного автоматизированного и роботизированного оборудования, специальных приспособлений и инструмента; широкое использование транспортных устройств для передачи заготовок вдоль поточной линии; механизация и автоматизация технического контроля; наличие рабочих невысокой квалификации; минимальная длительность производственного цикла и др.

Тип производства определяют по коэффициенту закрепления операций К з.о

где Q – число операций, выполненных или подлежащих выполнению в течение планового периода, равного одному месяцу; Р – число рабочих, выполняющих различные операции.

Коэффициент закрепления операций является одной из основных характеристик типа производства (ГОСТ 3.1121–84). Значение для массового производства составляет К з.о = 1, для крупносерийного – 1–10, для серийного – 10–20. При единичном производстве К з.о может быть более 40.

В машиностроении различают две формы производства: непоточное и поточное.

Непоточным называют производство, при котором его объекты в процессе изготовления находятся в движении с различной продолжительностью операций и перерывов между ними. Эта форма характерна для единичного производства.

Поточным называют производство, при котором операции закреплены за определенными рабочими местами, расположенными в порядке их выполнения, а объект производства передается с одного рабочего места на другое с определенным тактом.

Это наиболее совершенная с точки зрения минимизации издержек форма организации массового производства. По этому принципу строятся автоматические линии обработки и сборки. Особенность автоматического производства – выполнение операций без непосредственного участия рабочего либо под его наблюдением и контролем. Поточное производство может быть и неавтоматическим, если установку заготовок и их снятие после обработки выполняет рабочий.

Для организации поточного производства требуется одинаковая или кратная производительность на всех операциях. На линии обработанные заготовки или собранные узлы выпускаются через строго определенный интервал времени, называемый тактом выпуска.

Такт выпуска (мин/шт.) – интервал времени Т в между выпуском двух изделий или заготовок определенных наименований, следующих одно за другим,

где Фд – действительный фонд времени в планируемом периоде (месяц, сутки, смена), ч; N – производственная программа на этот же период (число изделий, шт.).

Цикл – интервал календарного времени от начала до конца выполнения какого-либо повторяющегося технологического или производственного процесса независимо от числа одновременно изготовляемых изделий.

Различают цикл изготовления изделия в целом, отдельных сборочных единиц и деталей, выполнения отдельных операций.

Каждое производство обладает определенной производственной мощностью , под которой понимают максимально возможный выпуск продукции установленных номенклатуры и количества, который может быть осуществлен за определенный период времени при установленном режиме работы.

Введение
1.Машина как объект производства
2 Производственный процесс и его структура
3 Технологический процесс и его структура
4 Типы производства и их характеристика
Заключение
Список использованных источников

Введение

В основе производственного процесса лежит технологический процесс. Он включает в себя все операции обработки, связанные непосредственно с изменением формы, размеров и свойств изготовляемого изделия, выполняемые а определенной последовательности. Различают такие технологические процессы: обработка давлением, механическая обработка, термическая обработка, сборка и многие другие. На заводе технологические процессы и технологическую документацию разрабатывает отдел главного технолога. Правильно разработанные технологические процессы обеспечивают выполнение всех операций по изготовлению промышленной продукции с минимальными затратами материалов, труда и энергии.

Виды производств. Для этого типа производства характерно применение универсального оборудования, на котором обрабатываются разнообразные по форме и величине детали, универсальные приспособления и измерительный инструмент, значительное количество ручных работ, использование высококвалифицированных рабочих. Себестоимость деталей на таких заводах значительно выше, чем на заводах с иным характером производства, а производительность труда намного ниже. Типичными представителями такого типа производства являются заводы тяжелого машиностроения, турбинные, судостроительные, химического машиностроения и др. Кроме того, на современных машиностроительных заводах с массовым и серийным характером производства имеются экспериментальные цеха, где создаются новые образцы машин в одном или нескольких экземплярах, что характерно для индивидуального производства.

Серийное производство характеризуется выпуском определенных партий (серий) одинаковых изделий, которые повторяются через определенные промежутки времени, применением высокопроизводительного специального оборудования, приспособлений, оснастки и инструмента. В зависимости от размера партии (серии) выпускаемых изделий различают три типа серийного производства: крупносерийное, которое по своему характеру приближается к массовому, среднесерийное и мелкосерийное. Типичными представителями заводов серийного производства являются тепловозостроительные, станкостроительные и др. Массовое производство характеризуется выпуском большого количества одинаковых изделий (машин) на протяжении длительного времени, узкой специализацией рабочих мест, применением высокопроизводительного специального оборудования (автоматических линий, станков-автоматов и полуавтоматов, агрегатных станков), а также специальных оснастки, приспособлений и инструментов, широкой взаимозаменяемостью деталей.

К заводам этого типа относятся автомобиле- и тракторостроительные, завод поршней и др. Принципы поточного производства. В машиностроении различают две формы организации производства: поточное и непоточное. Характерной особенностью поточного производства является закрепление за рабочими местами выполнения определенных операций, расположение рабочих мест в технологической последовательности выполнения операций обработки. При этом до минимума сокращается время на передачу детали с одного рабочего места к другому. Поточная форма организации производства свойственна заводам серийного и массового производства. Пели за рабочими местами операции не закреплены и оборудование установлено независимо от технологической последовательности обработки, то это является характерными чертами непоточного производства.

Элементы технологического процесса

Всякий технологический процесс состоит из отдельных элементов. Такими элементами являются: операция, установка, позиция, переход, проход, рабочий прием. Под технологической операцией понимают часть технологического процесса обработки заготовки, выполняемую на одном рабочем месте (станке) одним инструментом (резцом, напильником и т. п.) одним или несколькими рабочими. В зависимости от объема выполняемой работы операции могут быть простыми и сложными. Сложную операцию можно разбить на отдельные составные части, называемые установками.

Таким образом, установка - это часть операции, которая выполняется на станке (рабочем месте) при неизменном креплении заготовки. Позиция представляет собой часть операции, которая выполняется при одном неизменном положении заготовки относительно инструмента (не считая перемещении, связанных с рабочими движениями заготовки или инструмента). Часть операции по обработке одной или одновременно нескольких поверхностей заготовки, которая выполняется при неизменных режиме станка и инструменте (или нескольких инструментах), называется переходом. Проходом называется часть перехода, при котором снимается один слой металла или другого материала. Рабочим приемом называется законченное действие рабочего при выполнении операции (закрепление или снятие заготовки, режущего инструмента и т. п.).

Многопозиционная обработка. Высокой производительности труда на машиностроительных заводах при механической обработке достигают благодаря широкому внедрению прогрессивных технологических процессов, применения специального высокопроизводительного оборудования, приспособлений и инструмента. В зависимости от тина производства и имеющегося оборудования обработку деталей можно выполнять двумя различными методами: на небольшом количестве различных станков и на сравнительно большом количестве станков, каждый из которых выполняет только одну определенную операцию. Обработка деталей по первому методу получила название метода концентрированных (укрупненных) операций, а по второму - метода дифференцированных (расчлененных) операций.

Отличительной чертой метода укрупненной обработки является объединение нескольких переходов в одной более сложной операции. Например, сокращение количества перестановок деталей на станке и выполнение заданной обработки за одну установку, одновременное сверление нескольких отверстий в различных плоскостях и т. п. Высшей степенью развития метода укрупнения операции является многопозиционная обработка деталей на автоматических поточных линиях и на агрегатных станках, что является характерным для массового и крупносерийного производства.

Однако метод укрупнения операций успешно применяется и в условиях единичного и мелкосерийного производства: при обработке тяжелых и крупных деталей, при наличии зажимных приспособлений, которые требуют при закреплении деталей больших физических усилий рабочего, при установке сложных заготовок, для правильности выверки которых требуется затрата большого количества времени и т. п. При этом требуется более высокая квалификация рабочих и предъявляются более высокие требования к рабочему месту. Совмещению нескольких операций на одном станке способствует применение многоместных приспособлений, много шпиндельных головок, комбинированных инструментов (комбинированных сверл, зенкеров и т. п.).

1.Машина как объект производства

Машиностроение является одной из ведущих отраслей народного хозяйства. Объектами производства машиностроительной промышленности являются различные виды машин. Понятие о «машине» формировалось на протяжении многих столетий по мере развития науки и техники. С давних времен под машиной понимали устройство, предназначенное для действия в нем сил природы сообразно потребностям человека. В настоящее время понятие «машина» расширилось и трактуется с разных позиций и в различном смысле. Например, с точки зрения механики машина ­ это механизм или сочетание механизмов, выполняющих целесообразные движения для преобразования энергии, материалов или производства работ.

Появление электронно-вычислительных машин, стихийно причисленных к классу машин, вынудило рассматривать машину как устройство, выполняющее определенные целесообразные механические движения для преобразования энергии, материалов, производства работ или же для сбора, передачи, хранения, обработки и использования информации. Все машины и различные механические устройства создавались с целью замены или облегчения физического и умственного труда человека. С точки зрения технологии машиностроения машина может быть либо объектом, либо средством производства. Поэтому для технологии машиностроения понятие «машина» можно определить как систему, созданную трудом человека для качественного преобразования исходного продукта в полезную для человека продукцию. Процесс преобразования может вестись механическим, физическим, химическим путем как каждым в отдельности, так и в сочетаниях. В зависимости от области использования и функционального назначения различают энергетические, производственные и информационные машины.

В энергетических машинах один вид энергии превращается в другой. Такие машины обычно называют двигателями. Гидравлические турбины, двигатель внутреннего сгорания, паровые и газовые турбины относят к так называемым тепловым двигателям. Электрические двигатели постоянного и переменного тока составляют группу электрических машин. Число типов производственных машин достаточно велико. Это объясняется разнообразием производственных процессов, выполняемых этими машинами. Различают строительные, грузоподъемные, землеройные, транспортные и другие машины. Самую большую группу составляют технологические или рабочие машины. К ним можно отнести, например, металлорежущие станки, текстильные и бумагоделательные машины, полиграфическое оборудование и др. Для технологических машин характерны периодически повторяющиеся перемещения их рабочих органов, которые непосредственно выполняют производственные операции. К рабочим органам машины необходимо непрерывно подводить механическую энергию. При этом двигатель (чаще всего электрический) и рабочие органы машины соединяются с помощью специальных устройств, называемых механизмами. Механизмы являются составной частью как энергетических, так и производственных машин.

В современных энергетических машинах используют простые виды движений (вращательные, возвратно-поступательные), поэтому в них применяется небольшое число типов механизмов. Наоборот, число типов механизмов, используемых в современных производственных машинах, достаточно велико. Это объясняется большим разнообразием типов движений их рабочих органов. Машина-двигатель, передаточный механизм и исполнительная машина, спроектированные как одно целое и установленные на общей раме или фундаменте, представляют собой машинный агрегат. Огромное значение для развития всех отраслей современного производства имеет все более широкое внедрение методов автоматического контроля производственных процессов. Устройства, используемые для этой цели, называют приборами. Отдельной группой устройств, изменяющих состояние предмета труда без непосредственного участия рабочего, являются аппараты.

В аппаратах происходят различные химические, тепловые, электрические и другие процессы, необходимые для обработки или изменения свойств обрабатываемых деталей. Рабочие устройства аппаратов, как правило, неподвижны. Иногда аппараты включают устройства для транспортирования обрабатываемых объектов (транспортеры термических печей, различные загрузочные и дозирующие устройства и др.). Группу информационных машин составляют вычислительные, измерительные, контрольно-управляющие и др. Энергетические и информационные машины изучаются в специальных курсах соответствующих специальностей. Машины, механизмы, отдельные узлы и детали в процессе производства их на машиностроительном предприятии являются изделиями. Изделием в машиностроении называют любой предмет или набор предметов производства, подлежащих изготовлению на данном предприятии.

Изделием может быть машина, ее элементы в сборе и отдельные детали, если они являются продуктом конечной стадии данного производства. Например, для автомобильного завода изделием является автомобиль, для завода редукторов – редуктор, для завода поршней – поршень и т.п. Изделия могут быть неспецифицированными (не имеющими составных частей) и специфицированными (состоящими из двух и более частей). Деталь ­ это изделие, изготавливаемое из однородного по наименованию и марке материала без применения сборочных операций. Характерным признаком детали является отсутствие в ней разъемных и неразъемных соединений. Деталь представляет собой комплекс взаимосвязанных поверхностей, выполняющих различные функции при эксплуатации машины. Детали машин различного функционального назначения отличаются формой, размерами, материалом и др. Вместе с тем независимо от функционального назначения детали машин имеют общее свойство производственного характера ­ они являются продуктом производства, формирующего их из исходных заготовок и материалов.

Кроме отдельных машин и их частей объектами производства машиностроительных предприятий могут быть комплексы и комплекты изделий. Комплексом называют два и более специфицированных изделия, не соединенных на предприятии-изготовителе сборочными операциями, но предназначенных для выполнения взаимосвязанных эксплуатационных функций, например: бурильная установка, автоматическая линия, цех-автомат и т.п. Комплект ­ это два и более изделий, не соединенных на предприятии-изготовителе сборочными операциями и представляющих набор изделий, которые имеют общее эксплуатационное назначение вспомогательного характера, например: комплект запасных частей, комплект инструмента и принадлежностей, комплект измерительной аппаратуры и т.п. Группу составных частей изделия, которые необходимо подать на рабочее место для сборки изделия или его составной части, называют сборочным комплектом. Изделие предприятия-поставщика, применяемое как составная часть изделия, которое выпускается предприятием-изготовителем, называют комплектующим изделием. Для моторного завода комплектующими изделиями могут быть, например, стартеры, генераторы, прерыватели-распределители и др. Одной из важнейших характеристик выпускаемой продукции является ее качество. При этом в соответствии с ГОСТ 15467­79 под качеством промышленной продукции понимается совокупность свойств, обусловливающих ее пригодность удовлетворять определенные потребности в соответствии с ее назначением. Качество продукции фиксируется на определенный период времени с помощью различных нормативных документов, главным образом стандартов, и изменяется при появлении более прогрессивных технологий. Качество продукции относится к числу важнейших показателей производственно-хозяйственной деятельности промышленного предприятия. Именно качество продукции обусловливает финансовую и экономическую устойчивость предприятия, темпы научно-технического прогресса, экономию материальных и трудовых ресурсов. Во всех странах мира выпуск продукции высокого качества рассматривается как одно из важнейших условий развития национальной экономики. Снижение качества приводит к уменьшению объема продаж, прибыли и рентабельности, к снижению экспорта и другим нежелательным последствиям.

2. Производственный процесс и его структура

Промышленное производство является наиболее крупной и ведущей областью сферы материального производства. Оно представляет собой систему взаимосвязанных отраслей, занятых добычей и переработкой промышленного и сельскохозяйственного сырья в готовую продукцию, необходимую для общественного производства и личного потребления. Машиностроительное производство основано на преимущественном применении при выпуске продукции методов технологии машиностроения. Основной продукцией машиностроения являются металлорежущие станки, автомобили, тракторы, сельскохозяйственные машины, оборонная продукция, оборудование для энергетики, строительная техника и другие виды машин и механизмов. Машиностроительное производство в целом представляет собой множество организационно и экономически самостоятельных производственных единиц, называемых предприятиями машиностроения. Машиностроительное предприятие является сложноорганизованной, целенаправленной системой, объединяющей людей и орудия производства для обеспечения выпуска изделий.

Процесс изготовления машин и механизмов на машиностроительном предприятии состоит из комплекса работ, в результате которых исходные материалы и полуфабрикаты превращаются в готовое изделие. Отдельные виды исходных материалов, деталей и узлов (подшипники, электродвигатели, гидроавтоматика, резинотехнические изделия и др.) машиностроительный завод может получать в качестве комплектующих изделий от других промышленных предприятий. Совокупность всех действий людей и орудий производства, необходимых для изготовления или ремонта изделий на данном предприятии, называют производственным процессом. Производственный процесс современных машиностроительных предприятий представляет собой единый взаимосвязанный комплекс работ, охватывающих подготовку средств производства и организацию обслуживания рабочих мест, процессы получения исходных заготовок и готовых деталей, процессы сборки, испытания, технического контроля, хранения, транспортировки, упаковки и сбыта готовой продукции, а также другие виды работ, связанные с выпуском продукции. В зависимости от значения и роли в изготовлении продукции различают основные, вспомогательные и обслуживающие производственные процессы. Основной процесс обеспечивает производство товарной продукции. Он непосредственно связан с изготовлением деталей и сборкой из них машин и механизмов. В ходе основных производственных процессов сырье и материалы превращаются в готовую продукцию заданного качества. К основному производству относятся, например, обработка заготовок на металлорежущих станках, химическая и химико-термическая обработка, ковка, штамповка, сварка, сборка и др.

Вспомогательные процессы обеспечивают стабильную и ритмичную работу основного процесса и заняты изготовлением продукции и оказанием услуг, необходимых основному производству. К этим работам относят, например, изготовление металлорежущих инструментов и технологической оснастки, наладка и ремонт оборудования, изготовление контрольно-измерительных инструментов, заточка инструмента, обеспечение предприятия электрической и тепловой энергией, сжатым воздухом, углекислым газом, кислородом, ацетиленом и другие виды работ. Изделия основного производства предназначены для реализации по договорам и на свободном рынке, а изделия вспомогательного производства используются только внутри предприятия-изготовителя. Обслуживающие процессы должны обеспечивать бесперебойную и ритмичную работу всех подразделений предприятия. К ним относятся меж­ и внутрицеховой транспорт, погрузочно-разгрузочные работы, складирование и хранение сырья, материалов, комплектующих изделий, уборка цехов и территории предприятия. Сюда можно отнести также заводские лаборатории, лечебные учреждения, столовые и др.

В зависимости от технической оснащенности, т.е. в зависимости от участия рабочего производственные процессы подразделяются на ручные, ручные механизированные, машинно-ручные, машинные, автоматизированные и аппаратурные. В случае ручных процессов воздействие на предмет труда осуществляется рабочим с помощью каких-либо инструментов, но без применения любых источников энергии. Это, например, заворачивание гайки ключом, сверление отверстия ручной дрелью.

Ручные механизированные процессы характеризуются тем, что технологические операции выполняются рабочим с помощью ручных механизированных орудий труда, т.е, с использованием каких-либо источников энергии, например, сверление отверстий электродрелью, зачистка литья переносным наждачным кругом и т.п. К машинно-ручным относятся процессы, когда воздействие на предмет труда производится с помощью машины или механизма, но при обязательном участии рабочего, например, сверление отверстия на сверлильном станке с ручной подачей.

Машинные процессы осуществляются на машинах, станках и других видах технологического оборудования без непосредственного участия рабочего, а роль рабочего при этом заключается в обеспечении машины материалом, снятии готовой продукции, пуске и остановке оборудования и пр.

Автоматизированные производственные процессы выполняются на станках-автоматах, автоматизированных поточных линиях и других видах автоматизированного оборудования, а роль рабочего в этом случае сводится к контролю за ходом процесса и выполнению пуско-наладочных работ. Аппаратурные процессы имеют место тогда, когда воздействие на предмет труда происходит каким-либо видом энергии ­ тепловой, химической, электрической. К этим видам процессов можно отнести, например, металлургические процессы, термическую и химико-термическую обработку, приготовление пара, сушку, различные химические процессы. Рабочие в этом случае наблюдают за работой аппаратов и при необходимости вмешиваются в ход протекающих в них процессов. В зависимости от стадии изготовления, т.е. от места в процессе изготовления изделия, различают заготовительные, обрабатывающие и сборочные производственные процессы. Заготовительные процессы превращают сырье и материалы в исходные заготовки, по форме и размерам приближающиеся к готовым деталям.

В машиностроении это, например, литейные, кузнечно-штамповочные цехи, цехи по первичной обработке проката. Обрабатывающими являются процессы, в ходе которых заготовки превращаются в готовые детали, форма, размеры и свойства которых заданы конструктором на чертеже. К этой фазе относятся обработка заготовок на металлорежущих станках, термическая и химико-термическая обработка, гальванические, окрасочные и другие работы. Сборка узлов, агрегатов и отдельных деталей в готовые изделия производится в отдельных цехах или на отдельных участках цехов. Кроме того, в производственном процессе предусматриваются контроль качества, регулирование и испытание изготовленной продукции, т.е. проверка тех параметров, которые и определяют ее качество, назначение и применение.

Производственную деятельность завода осуществляют входящие в его состав цехи, участки, различные службы и подразделения, в которых изготовляется, проходит контрольные проверки и испытания основная продукция, комплектующие изделия, материалы и полуфабрикаты, запасные части для обслуживания изделий и ремонта их в процессе эксплуатации. Цех является основной производственной единицей машиностроительного предприятия. При этом по ГОСТ 14.004­83 под цехом понимают совокупность производственных участков. Цех характеризуется выполнением работ технологически однородного вида, наличием определенного типажа технологического оборудования и определенных видов профессий рабочих. Например, в механических цехах производят обработку деталей машин резанием на металлорежущих станках, профессии рабочих ­ токари, фрезеровщики, сверловщики, расточники и др.

Цех является обособленным в административном отношении звеном, выполняющим определенную часть общего производственного процесса изготовления продукции. Цехи осуществляют свою деятельность на принципах хозяйственного расчета. Производственный участок ­ это группа рабочих мест, организованных по предметному, технологическому или предметно-технологическому принципам. В зависимости от выполняемых функций и роли в изготовлении продукции цехи, как правило, подразделяются на производственные, вспомогательные и обслуживающие. Кроме того, почти на каждом машиностроительном предприятии имеются подразделения, занимающиеся повышением производственной квалификации рабочих, инженерно-технических работников, специалистов. Состав цехов и служб предприятия с указанием связей между ними называют его производственной структурой.

Особую роль в производственной структуре предприятия играют конструкторские бюро, научно-исследовательские и испытательные станции, В них разрабатываются конструкции новых изделий, новые технологические процессы, проводятся экспериментальные исследования и опытно-конструкторские работы, проводится доработка конструкции изделия и т.п. Производственная структура цеха определяется главным образом конструктивными и технологическими особенностями продукции цеха, объемом выпуска продукции, формой специализации цеха и его кооперированием с другими цехами. Основными элементами производственной структуры цеха являются участки и линии, обеспечивающие изготовление деталей и сборку узлов и изделий, составляющих производственную программу цеха и завода. Кроме основных производственных участков и линий в состав цехов входят также вспомогательные отделения и службы, обеспечивающие функционирование производственных участков. Это, например, отделения и участки по восстановлению режущего инструмента, его ремонта, цеховая ремонтная база по техническому обслуживанию и ремонту оборудования, сбора и переработки стружки, контрольные и испытательные отделения и др. Основные производственные участки могут создаваться по принципу технологической и предметной специализации.

На участках, организованных по принципу технологической специализации, выполняют технологические операции определенного вида. Например, в механическом цехе могут быть организованы токарный, фрезерный, шлифовальный, слесарный и другие участки, в сборочном ­ участки узловой и окончательной сборки изделий, испытаний их частей и систем, контрольно-испытательные станции и др. На участках, организованных по принципу предметной специализации, осуществляют не отдельные виды операций, а технологические процессы в целом, вследствие чего получают законченную продукцию для данного участка. Например, выделяют участок по обработке корпусных деталей, валов, зубчатых и червячных колес, метизов и т.п. В некоторых случаях за цехом или участком закрепляют технологический процесс изготовления отдельного изделия или какой-либо ограниченной номенклатуры изделий, например, цехи редукторов, муфт, коробок передач и т.п. В этом случае детали и узлы распределяют по отдельным цехам или участкам цехов в зависимости от их массы, сложности, функционального назначения или других признаков. Установка и расположение оборудования на таких участках осуществляется по ходу технологического процесса изготовления определенных деталей или готовых изделий.

Машиностроительные предприятия в зависимости от степени их технологической специализации подразделяются на два вида.

1. Предприятия, полностью охватывающие все стадии процесса изготовления изделия. В состав такого предприятия входят основные предприятия по всем стадиям производственного процесса, начиная от заготовительных до сборочных включительно.

2. Предприятия, не полностью охватывающие все стадии изготовления изделия. В производственной структуре такого предприятия отсутствуют некоторые цехи, относящиеся к той или иной стадии основного производственного процесса. Такое предприятие может иметь только основные заготовительные цехи, выпускающие отливки, поковки или штамповки, поставляемые в порядке кооперации другим машиностроительным предприятиям; или же только сборочные цехи, выполняющие сборку изделий из деталей, узлов, поставляемых в порядке кооперации другими предприятиями; или только механообрабатывающие цехи, которые из заготовок, получаемых от других предприятий, изготовляют детали или узлы и передают их для окончательной сборки и испытания другим машиностроительным предприятиям.

Предприятия с неполной производственной структурой имеют обычно более высокой уровень технологической специализации, чем предприятия с полной производственной структурой. Рационально организованный технологический процесс изготовления изделия должен обеспечивать заданное качество продукции и производительность труда, а также ритмичность работы, стабильность качества во времени и выпуск продукции в требуемом объеме. При решении вопросов развития производства, его технического перевооружения и реконструкции особенно важно правильно определить наиболее перспективные объекты производства, потребность рынка в этих объектах как в ближайшее время, так и на длительную перспективу. Вся научно-техническая, производственная и сбытовая деятельность предприятия должна быть направлена на выпуск конкурентоспособных и пользующихся спросом изделий, в том числе и на мировом рынке.

3. Технологический процесс и его структура

Важнейшим элементом производственного процесса является технологический процесс. Технологическим процессом называют часть производственного процесса, содержащую целенаправленные действия по изменению и последующему определению состояния предмета труда. Под изменением состояния предмета труда понимают изменение его физических, механических, химических свойств, геометрических размеров, внешнего вида. В зависимости от содержания различают технологические процессы получения заготовок, изготовления деталей, сборки отдельных узлов и машины в целом, окраски машины и др. Последующее определение состояния предмета труда означает последовательный контроль производственного «изменения» предмета производства.

По последовательности выполнения различают технологические процессы изготовления исходных заготовок, их обработки и сборки изделий. В технологическом процессе изготовления заготовок происходит превращение материала в исходные заготовки деталей машин путем литья, обработки давлением, резки сортового проката, а также комбинированными методами. В результате технологического процесса обработки в определенной последовательности происходит непосредственное изменение состояния обрабатываемой заготовки, т.е. изменение ее размеров, формы или физико-механических свойств. При этом под обработкой понимают действие, направленное на изменение свойств предмета труда при выполнении технологического процесса.

К отдельным видам обработки можно отнести, например, обработку резанием, обработку давлением, термическую обработку, поверхностное упрочнение деталей и др. Совокупность значений параметров технологического процесса в определенном интервале времени называется технологическим режимом. При обработке резанием, например, параметрами технологического режима являются скорость резания, глубина резания и подача; при термической обработке ­ скорость нагрева, температура нагрева, длительность выдержки и скорость последующего охлаждения. Технологический процесс может осуществляться при наличии соответствующих орудий производства, называемых средствами технологического оснащения. При этом к технологическому оснащению относят технологическое оборудование и технологическую оснастку.

Технологическим оборудованием называют средства технологического оснащения, в которых для выполнения определенной части технологического процесса размещают материалы или заготовки, средства воздействия на них, а также технологическая оснастка. К технологическому оборудованию можно отнести, например, литейные машины, металлорежущие станки, нагревательные печи, гальванические ванны, ковочные молоты, испытательные стенды и т.д. Технологической оснасткой называют средства технологического оснащения, дополняющие технологическое оборудование для выполнения определенной части технологического процесса. К технологической оснастке относят режущий инструмент, штампы, приспособления, измерительные средства, модели, литейные формы и др.

Степень прогрессивности технологического процесса можно оценить качественными и количественными показателями. Качественный показатель прогрессивности технологического процесса характеризует его основную идею, технический метод реализации этой идеи, а также степень приближения реального технологического процесса к такой его модели, которая может быть разработана с учетом последних достижений науки и техники. С количественной стороны прогрессивность технологического процесса можно оценить системой показателей, основными из которых по ГОСТ 27782­88 являются коэффициент использования материала, расходный коэффициент, коэффициент раскроя материала. Коэффициент использования материала характеризует степень полезного расхода материала на производство изделия. Расходный коэффициент ­ это показатель, обратный коэффициенту использования материала. Коэффициент раскроя материала характеризует степень использования массы (площади, длины, объема) исходного материала при раскрое по отношению к массе (площади, длине, объему) всех видов полученных заготовок или деталей. Максимально допустимое плановое количество материала на изготовление изделия при установленном качестве и условиях производства составляет норму расхода материала на изделие.

В составе нормы расхода следует учитывать массу изделия (полезный расход материала), технологические отходы и потери материала. Отходы могут быть использованы в качестве исходного материала для производства других изделий или реализованы в качестве вторичного сырья. Потери материала характеризуют количество безвозвратно теряемого материала в процессе изготовления изделия. Массу технологических отходов и потерь материала регламентируют в технологической документации.

Ранее отмечалось, что производство машин на машиностроительных предприятиях осуществляется в результате выполнения комплекса взаимосвязанных технологических процессов, являющихся частями общего производственного процесса предприятия. Для выполнения технологического процесса создается рабочее место, представляющее собой участок производственной площади цеха, оборудованный в соответствии с выполняемой на нем работой. Рабочее место является элементарной единицей структуры предприятия, где размещены исполнители работы, обслуживаемое технологическое оборудование, часть конвейера, устройства для хранения заготовок и изделий, изготовленных на данном рабочем месте, а на ограниченное время ­ технологическая оснастка и предметы труда. Т

ехнологический процесс обычно расчленяется на части, называемые операциями. Технологической операцией называют законченную часть технологического процесса, выполняемую на одном рабочем месте. Операция охватывает все действия оборудования и рабочих над одним или несколькими совместно обрабатываемыми или собираемыми объектами производства. Так при обработке на станках операция включает все действия рабочего по управлению станком, а также автоматические движения станка, связанные с процессом обработки заготовки до момента снятия ее со станка и перехода к обработке другой заготовки. Число операций в технологическом процессе зависит от сложности конструкции детали или собираемого изделия и может изменяться в достаточно широких пределах.

К отдельным операциям обработки можно отнести, например, сверление, точение, фрезерование, развертывание, нарезание резьбы метчиком и др. Как видно, операция характеризуется неизменностью рабочего места, технологического оборудования, предмета труда и исполнителя. При изменении одного из этих условий имеет место новая операция. Однако изменение рабочего места не всегда является критерием законченности операции. Например, обработка на двух сверлильных станках-дублерах, где необходимо постоянное присутствие по одному рабочему возле каждого станка, означает наличие двух рабочих мест, но выполнение одной и той же операции, если на этих станках выполняется одна и та же обработка с одинаковой наладкой оборудования. В случае если черновая обработка детали, например, выполняется одним рабочим на одном станке, а чистовая – другим рабочим на другом станке, то здесь выполняется две операции. Если же и черновая и чистовая обработка выполняется на одном станке, то это будет одна операция. Точение вала, выполняемое последовательно сначала на одном конце, а затем после переустановки его в центрах ­ на другом, является одной операцией.

Следует заметить, что переход к обработке другой заготовки не означает начало новой операции. Заготовка может быть из одной партии с предыдущей. В этом случае операция одна и та же, но повторяется столько раз, сколько заготовок в партии. Поэтому основным критерием другой операции является переналадка станка, т.е. законченность процесса обработки. Необходимость деления технологического процесса на операции обусловлена в основном двумя факторами. Обычно обработать заготовку со всех сторон на одном рабочем месте невозможно. Кроме того, при построении технологического процесса по принципу дифференциации возникает необходимость разделения предварительной и окончательной механической обработки заготовки, поскольку между ними должна быть проведена термическая обработка. С другой стороны по экономическим соображениям нецелесообразно, например, создавать специальный и дорогостоящий станок, позволяющий совмещать на одном рабочем месте проведение многих способов механической обработки. В крупносерийном и массовом производстве при сборке большого числа одинаковых изделий расчленение сборочного процесса на отдельные операции и закрепление каждой из них за отдельным рабочим местом обусловливают узкую специализацию рабочих в выполнении операций, что обеспечивает более высокую производительность труда и позволяет использовать рабочих сравнительно невысокой квалификации.

Содержание операции определяется многими факторами и, прежде всего, факторами организационного и экономического характера. Диапазон работ, входящих в состав операции, может быть достаточно широк. Операцию может составлять обработка всего лишь одной поверхности на отдельном станке. Например, фрезерование шпоночной канавки на вертикально-фрезерном станке. Изготовление сложной корпусной детали на автоматической линии, состоящей из нескольких десятков станков и имеющей единую систему управления, является также операцией. Технологическая операция является основным элементом производственного планирования и учета. По операциям определяют трудоемкость процесса, необходимое оборудование, инструмент, приспособления, квалификацию рабочих. На каждую операцию составляется вся плановая, учетная и технологическая документация.

Операции, входящие в состав технологического процесса, выполняют в определенной последовательности. Содержание, состав и последовательность выполнения операций определяют структуру технологического процесса. Последовательность прохождения заготовки, детали или сборочной единицы по цехам и производственным участкам предприятия при выполнении технологического процесса изготовления или ремонта называют технологическим маршрутом. Структура операции предполагает расчленение ее на составные элементы ­ установы, позиции и переходы. Для обработки заготовки ее необходимо установить и закрепить в приспособлении, на столе станка или другом виде оборудования. При сборке то же самое следует проделать с деталью, к которой должны быть присоединены другие детали. Установ ­ часть технологической операции, выполняемая при неизменном закреплении обрабатываемых заготовок или собираемой сборочной единицы. При каждом повторном снятии заготовки и последующем ее закреплении на станке или же при повороте заготовки на какой-либо угол для обработки новой поверхности имеет место новый установ.

В зависимости от конструктивных особенностей изделия и содержания операции она может быть выполнена либо с одного, либо с нескольких установов. В технологической документации установы обозначаются буквами А, Б, В и т.д. Например, при обработке вала на фрезерно-центровальном станке фрезерование торцов вала с двух сторон и их зацентровку выполняют последовательно за один установ заготовки. Полная обработка заготовки вала на токарно-винторезном станке может быть осуществлена только с двух установов заготовки в центрах, так как после обработки заготовки с одной стороны (установ А) ее необходимо открепить, установить в новом положении (установ Б) для обработки с другой стороны. В случае поворота заготовки без снятия ее со станка необходимо указывать угол поворота: 45°, 60° и т.д.

Установленная и закрепленная заготовка в случае необходимости может изменять свое положение на станке относительно инструмента или рабочих органов станка под воздействием устройств линейных перемещений или поворотных устройств, занимая новую позицию. Позицией называется каждое отдельное фиксированное положение, занимаемое неизменно закрепленной обрабатываемой заготовкой или собираемой сборочной единицей совместно с приспособлением относительно инструмента или неподвижной части оборудования при выполнении определенной части операции. При обработке заготовки, например, на токарно-револьверном станке позицией будет каждое новое положение револьверной головки.

При обработке на многошпиндельных автоматах и полуавтоматах неизменно закрепленная заготовка занимает различные позиции относительно станка путем вращения стола, последовательно подводящего заготовку к разным инструментам. Технологический переход ­ законченная часть технологической операции, выполняемая одними и теми же средствами технологического оснащения при постоянных технологических режимах и установке. Технологический переход, таким образом, характеризует постоянство применяемого инструмента, поверхностей, образуемых обработкой или соединяемых при сборке, а также неизменность технологического режима. Например, технологическими переходами будут являться получение отверстия в заготовке при обработке спиральным сверлом, получение плоской поверхности детали фрезерованием и т.п. Последовательная обработка одного и того же отверстия в корпусе редуктора расточным резцом, зенкером и разверткой будет состоять соответственно из трех технологических переходов, поскольку при обработке каждым инструментом образуется новая поверхность.

В токарной операции, выполняются два технологических перехода. Такие переходы называют простыми, или элементарными. Совокупность переходов, когда в работе одновременно участвуют несколько инструментов, называют совмещенным переходом. При этом все инструменты работают с одинаковой подачей и при одинаковой частоте вращения заготовки. В случае, когда происходит изменение последовательно обрабатываемых поверхностей одним инструментом с изменением режимов резания (скорости при обработке на гидрокопировальных станках или скорости и подачи на станках с ЧПУ) при одном рабочем ходе инструмента, имеет место сложный переход. Технологические переходы при этом могут выполняться последовательно или параллельно-последовательно. При обработке заготовок на станках с ЧПУ несколько поверхностей могут последовательно обрабатываться одним инструментом (например, подрезным резцом) при его движении по траектории, задаваемой управляющей программой. В этом случае говорят, что указанная совокупность поверхностей обрабатывается в результате выполнения инструментального перехода.

Примерами технологических переходов в сборочных процессах могут служить работы, связанные с соединением отдельных деталей машины: приданием им требуемого относительного положения, проверкой достигнутого положения и его фиксацией с помощью крепежных деталей. При этом постановку каждой крепежной детали (например, винта, болта или гайки) следует рассматривать как отдельный технологический переход, а одновременное закручивание нескольких гаек с помощью многошпиндельного гайковерта ­ как совмещение технологических переходов. Технологическая операция в зависимости от организации технологического процесса может быть осуществлена на основе концентрации или дифференциации технологических переходов. При концентрации переходов структура операции включает максимально возможное при заданных условиях количество технологических переходов. Такая организация операции сокращает количество операций в технологическом процессе. В предельном случае технологический процесс может состоять лишь из одной технологической операции, включающей все переходы, необходимые для изготовления детали. При дифференциации переходов стремятся к уменьшению количества переходов, входящих в технологическую операцию.

Пределом дифференциации является такое построение технологического процесса, когда в состав каждой операции входит лишь один технологический переход. Характерной особенностью технологического перехода в любых процессах (кроме аппаратурных) является возможность его обособления на отдельном рабочем месте, т.е. выделение его в виде самостоятельной операции. В случае однопереходной операции понятие операции может совпадать с понятием перехода. При организации процесса обработки по принципу дифференциации построения операции (а не перехода) технологический процесс расчленяется на одно-, двух-переходные операции, подчиняющиеся по продолжительности такту выпуска. Если операции (например, зубофрезерная, шлицефрезерная) по длительности выходят за пределы такта выпуска, то ставят станки-дублеры. Следовательно, пределом дифференциации служит такт выпуска. Принцип концентрации операций подразделяется на принцип параллельной концентрации и последовательной. И в том и в другом случае в одной операции концентрируется большое количество технологических переходов, но они распределяются по позициям таким образом, чтобы время обработки на каждой операции было примерно равно или было меньше такта выпуска.

По наибольшему времени по позициям будет определяться норма времени на операцию. По принципу последовательной концентрации все переходы выполняются последовательно, а время обработки определяется суммарным временем по всем переходам. Технологический переход при обработке резанием может состоять из нескольких рабочих ходов. Под рабочим ходом понимают законченную часть технологического перехода, состоящую из однократного перемещения инструмента относительно заготовки, сопровождаемого изменением формы, размеров, качества поверхности или свойств заготовки. Количество рабочих ходов, выполняемых в одном технологическом переходе, выбирают, исходя из обеспечения оптимальных условий обработки, например уменьшения глубины резания при съеме значительных слоев материала. Примером рабочего хода на токарном станке является снятие резцом одного слоя стружки непрерывно, на строгальном ­ снятие одного слоя металла по всей поверхности, на сверлильном ­ сверление отверстия на заданную глубину. Рабочие ходы имеют место в тех случаях, когда величина припуска превышает возможную глубину резания и его приходится снимать за несколько рабочих ходов. При повторении одной и той же работы, например, сверление четырех одинаковых отверстий последовательно, имеет место один технологический переход, выполняемый за 4 рабочих хода; если же эти отверстия выполняются одновременно, то имеет место 4 совмещенных рабочих хода и один технологический переход. В состав операции входят также элементы, связанные с выполнением вспомогательных движений и необходимые для осуществления технологического процесса. К ним относятся вспомогательные переходы и приемы. Вспомогательный переход ­ законченная часть технологической операции, состоящая из действий человека и (или) оборудования, которые не сопровождаются изменением формы, размеров или свойств поверхности, но необходимы для выполнения технологического перехода.

К вспомогательным переходам относятся, например, закрепление заготовки на станке или в приспособлении, смена инструмента, перемещение инструмента между позициями и др. Для сборочных процессов вспомогательными могут считаться переходы по установке базирующей детали на сборочном стенде или в приспособлении на конвейере, перемещение к ней присоединяемых деталей и др. Для выполнения технологической операции необходимы также вспомогательные ходы и приемы. Вспомогательный ход ­ законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, необходимого для подготовки рабочего хода. Под приемом понимают законченную совокупность действий рабочего, применяемых при выполнении перехода или его части и объединенных одним целевым назначением. Например, вспомогательный переход «установить заготовку в приспособлении» состоит из следующих приемов: взять заготовку из тары, установить в приспособление, закрепить. Вспомогательные ходы и приемы учитываются при изучении затрат вспомогательного времени на выполнение операции. Любой технологический процесс протекает во времени. Интервал календарного времени от начала до конца какой-либо периодически повторяющейся технологической операции независимо от числа одновременно изготовляемых или ремонтируемых изделий называется циклом технологической операции.

Подготовку технологического оборудования и технологической оснастки к выполнению технологической операции называют наладкой. К наладке относятся установка приспособления, переключение скорости или подачи, настройка заданной температуры и т.д. Дополнительную регулировку технологического оборудования и (или) оснастки в процессе работы для восстановления достигнутых при наладке значений параметров называют подналадкой.

4. Типы производства и их характеристика

Машиностроительное производство характеризуется объемом выпуска, программой выпуска продукции, тактом выпуска. Объем выпуска продукции ­ это количество изделий определенных наименований, типоразмеров и исполнений, изготовляемых или ремонтируемых предприятием или его подразделением в течение планируемого периода времени (месяц, квартал, год). Объем выпуска в значительной степени определяет принципы построения технологического процесса. Установленный для данного предприятия перечень изготовляемых или ремонтируемых изделий с указанием объема выпуска и сроков выполнения по каждому наименованию на планируемый период времени называется программой выпуска продукции.

Тактом выпуска называется интервал времени, через который периодически производится выпуск изделий или заготовок определенных наименования, типоразмера и исполнения. Такт выпуска t, мин/шт., определяется по формуле t = 60 Фд/ N, где Фд ­ действительный фонд времени в планируемом периоде (месяц, сутки, смена), ч; N ­ производственная программа на этот же период, шт. Действительный фонд времени работы оборудования отличается от номинального (календарного) фонда времени, поскольку учитывает потери времени на ремонт оборудования. Действительный фонд работы оборудования в зависимости от его сложности и количества выходных и праздничных дней при 40­часовой рабочей неделе и при работе в две смены в машиностроительном производстве составляет от 3911 до 4029…4070 часов. Фонд времени рабочего при этом около 1820 ч.

В зависимости от производственных мощностей и возможностей сбыта продукции изделия на предприятии изготовляют в различных количествах ­ от единичных экземпляров, до сотен и тысяч штук. При этом все изделия, изготовленные по конструкторской и технологической документации без ее изменения, называются серией изделия. В зависимости от широты номенклатуры, регулярности, стабильности и объема выпуска изделий различают три основных типа производства: единичное, серийное и массовое. Каждому из этих типов присущи свои характерные особенности в организации труда и в структуре производственного и технологического процессов. Тип производства является классификационной категорией производства, выделяемой по признакам широты номенклатуры, регулярности, стабильности и объема выпуска продукции. В отличие от типа производства вид производства выделяется по признаку применяемого метода изготовления изделия. Примерами видов производства являются литейное, сварочное, механосборочное и др. Одной из основных характеристик типа производства является коэффициент закрепления операций Кз.о., представляющий собой отношение числа всех различных технологических операций ΣО, выполняемых или подлежащих выполнению в течение месяца, к числу рабочих мест ΣР: Кз.о. = ΣО/ΣР С расширением номенклатуры выпускаемых изделий и уменьшением их количества значение этого коэффициента увеличивается.

Единичное производство характеризуется малым объемом выпуска одинаковых изделий, повторное изготовление и ремонт которых, как правило, не предусматривается. При этом технологический процесс изготовления изделий либо совсем не повторяется, либо повторяется через неопределенные промежутки времени. По единичному типу производства выпускаются, например, крупные гидротурбины, прокатные станы, оборудование для химических и металлургических заводов, уникальные металлорежущие станки, опытные образцы машин в различных отраслях машиностроения, ремонтные цеха и участки и др.

Технология единичного производства характеризуется применением универсального металлорежущего оборудования, которое располагается в цехах обычно по групповому признаку, т.е. с разбивкой на участки токарных, фрезерных, шлифовальных станков и т.д. Обработку ведут стандартным режущим, а контроль ­ универсальным измерительным инструментом. Характерным признаком единичного производства является концентрация на рабочих местах разнообразных операций. При этом на одном станке часто производится полная обработка заготовок разнообразных конструкций и из различных материалов. Ввиду необходимости частой перенастройки и наладки станка на выполнение новой операции доля основного (технологического) времени в общей структуре нормы времени на обработку сравнительно невелика.

Отличительные особенности единичного производства обусловливают относительно низкую производительность труда и высокую себестоимость выпускаемых изделий. Серийное производство характеризуется изготовлением или ремонтом изделий периодически повторяющимися партиями. При серийном производстве одноименные или однотипные по конструкции изделия изготовляют по отработанным на технологичность чертежам. Продукцией серийного производства являются машины установившегося типа, выпускаемые в значительных количествах. К этой продукции можно отнести, например, металлорежущие станки, двигатели внутреннего сгорания, насосы, компрессоры, оборудование для пищевой промышленности и др. Серийное производство является наиболее распространенным в общем и среднем машиностроении.

В серийном производстве наряду с универсальным широко используется и специальное оборудование, автоматы и полуавтоматы, станки с ЧПУ, специальный режущий инструмент, специальные измерительные приборы и приспособления. В серийном производстве средняя квалификация рабочих обычно ниже, чем в единичном производстве. В зависимости от количества изделий в партии или серии и значения коэффициента закрепления операций различают мелкосерийное, среднесерийное и крупносерийное производство. Такое подразделение является достаточно условным для различных отраслей машиностроения, так как при одном и том же количестве машин в серии, но различных размеров, сложности и трудоемкости производство может быть отнесено к разным типам. Условной границей между разновидностями серийного производства по ГОСТ 3.1108­74 является величина коэффициента закрепления операций Кз.о.: для мелкосерийного производства 20 < Кз.о.< 40, для среднесерийного ­ 10 < Кз.о.< 20, а для крупносерийного ­ 1 < Кз.о.< 10.

В мелкосерийном производстве, близком к единичному, оборудование располагается преимущественно по типам станков ­ участок токарных станков, участок фрезерных станков и т.д. Станки могут располагаться и по ходу технологического процесса, если обработка ведется по групповому технологическому процессу. Применяют главным образом универсальные средства технологического оснащения. Размер производственной партии обычно составляет несколько единиц. При этом производственной партией принято называть предметы труда одного наименования и типоразмера, запускаемые в обработку в течение определенного интервала времени, при одном и том же подготовительно-заключительном времени на операцию. В среднесерийном производстве, обычно называемом серийным, оборудование располагают в соответствии с последовательностью выполнения этапов обработки заготовок. За каждой единицей оборудования обычно закрепляют несколько технологических операций, при этом возникает необходимость переналадки оборудования. Размер производственной партии составляет от нескольких десятков до сотен деталей.

В крупносерийном производстве, близком к массовому, оборудование, как правило, располагается в последовательности технологического процесса для одной или нескольких деталей, требующих одинакового процесса обработки. При недостаточно большой программе выпуска изделий целесообразно обрабатывать заготовки партиями, с последовательным выполнением операций, т.е. после обработки всех заготовок партии на одной операции производят обработку этой партии на следующей операции. Заготовки после окончания обработки на одном станке транспортируют целой партией или по частям к другому, при этом в качестве транспортных средств используют рольганги, подвесные цепные конвейеры или роботы. Обработку заготовок выполняют на предварительно настроенных станках, в пределах технологических возможностей которых допустима переналадка для выполнения иных операций. В крупносерийном производстве используются, как правило, специальные приспособления и специальный режущий инструмент. В качестве измерительного инструмента широко используют предельные калибры (скобы, пробки, резьбовые кольца и резьбовые пробки) и шаблоны, позволяющие определять годность обработанных деталей и производить разбивку их на размерные группы в зависимости от величины поля допуска.

Серийное производство значительно экономичнее, чем единичное, так как лучше используется оборудование, ниже припуски, выше режимы резания, более высокая специализация рабочих мест, значительно сокращаются цикл производства, межоперационные заделы и незавершенное производство, более высокий уровень автоматизации производства, повышается производительность труда, резко снижается трудоемкость и себестоимость изделий, упрощается управление производством и организация труда. При этом под заделом понимают производственный запас заготовок или составных частей изделия для обеспечения бесперебойного выполнения технологического процесса. Этот тип производства является наиболее распространенным в общем и среднем машиностроении. Около 80 % продукции машиностроения выпускается серийно. Массовое производство характеризуется большим объемом выпуска изделий, непрерывно изготовляемых или ремонтируемых продолжительное время, в течение которого на большинстве рабочих мест выполняется одна рабочая операция.

Детали, как правило, изготовляются из заготовок, производство которых ведется централизованно. Централизованным способом осуществляется производство нестандартного оборудования и технологической оснастки. Поставляют их своим потребителям цехи, являющиеся самостоятельной структурной единицей. Массовое производство экономически целесообразно при выпуске достаточно большого количества изделий, когда все материальные и трудовые затраты, связанные с переходом на массовое производство, достаточно быстро окупаются и себестоимость изделия ниже, чем при серийном производстве. Продукция массового производства ­ это изделия узкой номенклатуры, унифицированного или стандартного типа, выпускаемые для широкого сбыта потребителю. К этой продукции можно отнести, например, многие марки легковых автомобилей, мотоциклов, швейных машин, велосипедов и т.д.

В массовом производстве применяют высокопроизводительное технологическое оборудование ­ специальные, специализированные и агрегатные станки, многошпиндельные автоматы и полуавтоматы, автоматические линии. Широко применяется многолезвийный и наборный специальный режущий инструмент, предельные калибры, быстродействующие контрольные приспособления и приборы. Массовое производство характеризуется также установившимся объемом производства, что при значительной программе выпуска продукции обеспечивает возможность закрепления операций за определенным оборудованием. При этом производство изделий осуществляется по окончательно отработанной конструкторской и технологической документации. Наиболее совершенной формой организации массового производства является поточное производство, характеризуемое расположением средств технологического оснащения в последовательности выполнения операций технологического процесса и определенным тактом выпуска изделий. Для поточной формы организации технологического процесса требуется одинаковая или кратная производительность на всех операциях. Это позволяет производить обработку заготовок или собирать узлы без заделов в строго определенные промежутки времени, равные такту выпуска. Приведение длительности операций к указанному условию называют синхронизацией, что в некоторых случаях предусматривает использование дополнительного (дублирующего) оборудования. Для массового производства коэффициент закрепления операций Кз.о. = 1.

Основным элементом поточного производства является поточная линия, на которой расположены рабочие места. Для передачи предмета труда с одного рабочего места на другое применяют специальные транспортные средства. В поточной линии, являющейся основной формой организации труда поточного производства, на каждом рабочем месте выполняют одну технологическую операцию, а оборудование располагают по ходу технологического процесса (по потоку). Если длительность операции на всех рабочих местах одинакова, то работа на линии выполняется с непрерывной передачей объекта производства с одного рабочего места на другое (непрерывным потоком). Достигнуть равенства штучного времени на всех операциях обычно не удается. Это обусловливает технологически неизбежное различие загрузки оборудования по рабочим местам поточной линии. При значительных объемах выпуска в процессе синхронизации наиболее часто возникает необходимость уменьшения длительности операций. Это достигается за счет дифференциации и совмещения во времени переходов, входящих в состав технологических операций. В массовом и крупносерийном производствах при необходимости каждый из технологических переходов может быть выделен в отдельную операцию, если будет выполнено условие синхронизации. За время, равное такту выпуска, с поточной линии сходит единица продукции.

Производительность труда, соответствующая выделенному производственному участку (линии, участку, цеху), определяется ритмом выпуска. Ритм выпуска ­ это количество изделий или заготовок определенных наименований, типоразмеров и исполнений, выпускаемых в единицу времени. Обеспечение заданного ритма выпуска является важнейшей задачей при разработке технологического процесса массового и крупносерийного производства. Поточный метод работы обеспечивает значительное сокращение (в десятки раз) цикла производства, межоперационных заделов и незавершенного производства, возможность применения высокопроизводительного оборудования, снижения трудоемкости изготовления изделий, простоту управления производством. Дальнейшее совершенствование поточного производства привело к созданию автоматических линий, на которых все операции выполняют с установленным тактом на рабочих местах, оснащенных автоматическим оборудованием. Транспортирование предмета труда по позициям осуществляется также автоматически. Интервал календарного времени от начала до окончания процесса изготовления или ремонта изделия называют производственным циклом. Длительность производственного цикла и ритмичность работы предприятия в значительной степени зависят от организации всего производственного процесса, четкого управления производством и персоналом, своевременного снабжения предприятия сырьем, материалами, инструментом, запасными частями, комплектующими изделиями и другими средствами производства. Важное значение для ритмичности и экономичности работы предприятия имеет своевременная реализация изготовленной промышленной продукции. Следует отметить, что на одном предприятии и даже в одном цехе можно встретить сочетание различных типов производства.

Следовательно, тип производства предприятия или цеха в целом определяется по признаку преимущественного характера технологических процессов. Массовым можно назвать производство, если на большинстве рабочих мест выполняется одна постоянно повторяющаяся операция. Если на большинстве рабочих мест выполняется несколько периодически повторяющихся операций, то такое производство следует считать серийным. Отсутствие периодичности повторения операций на рабочих местах характеризует единичное производство. Кроме того, для каждого типа производства характерным является также соответствующая точность исходных заготовок, уровень отработанности конструкции деталей на технологичность, уровень автоматизации процесса, степень детализации описания технологического процесса и др. Все это влияет на производительность процесса и на себестоимость изготовляемых изделий. Планомерная проводимая унификация и стандартизация изделий машиностроения способствует специализации производства. Стандартизация приводит к сужению номенклатуры изделий при значительном увеличении программы их выпуска. Это позволяет шире применять поточные методы работы и автоматизацию производства. Характеристики производства отражаются в решениях, принимаемых при технологической подготовке производства.

Заключение

Основы организации производства. Под организацией производства понимают координацию и оптимизацию во времени и пространстве всех материальных и трудовых элементов производства с целью достижения в определенные сроки наибольшего производственного результата с наименьшими затратами. Следовательно, организация производства создает условия для наилучшего использования техники и людей в процессе производства, тем самым повышая его эффективность. На каждом промышленном предприятии имеются свои специфические задачи организации производства. Это могут быть, например, вопросы обеспечения сырьем, наилучшего использования рабочей силы, сырья, оборудования, улучшения ассортимента и качества выпускаемой продукции, освоение новых видов продукции и т.п. Поскольку на практике многие задачи организации производства решают технологии, то важно различать функции технологии и функции организации производства.

Технология определяет способы и варианты изготовления продукции. Функцией технологии является определение возможных типов оборудования и технологической оснастки для производства каждого вида продукции, а также оптимальных параметров технологического режима. Таким образом, технологии определяют, что нужно сделать с предметом труда и при помощи каких средств производства, чтобы превратить его в продукт с заданными свойствами. Функцией организации производства является определение конкретных значений параметров технологического процесса на основе анализа возможных вариантов и выбора наиболее эффективного в соответствии с целью и условиями производства. То есть организация производства определяет, как лучше сочетать предмет и орудия труда, а также сам труд, чтобы превратить предмет труда в продукт необходимых свойств с наименьшими затратами рабочей силы и средств производства.

Особенностями организации производства являются рассмотрение во взаимосвязи элементов производства и выбор таких методов и условий их использования, которые в наибольшей степени соответствуют цели производства. Многие вопросы организации производства рассматриваются совместно с технологией. Однако организация производства имеет и присущие только ей задачи. Это, в частности, углубление специализации, быстрая (гибкая) переориентация производства на другие виды продукции, обеспечение непрерывности и ритмичности производственного процесса, совершенствование форм организации производства и др. Кроме того, к задачам организации производства относятся сокращение длительности производственного цикла, бесперебойное снабжение сырьем, материалами, комплектующими изделиями, сбыт готовой продукции, снижение простоя оборудования и обеспечение оптимальной его загрузки, согласование всех звеньев производственного процесса и др.

Совокупность отделов и служб, занимающихся построением и координацией функционирования производственного процесса, называют организационной структурой предприятия. Экономическую эффективность производственной структуры можно оценить такими показателями, как состав и размер цехов, профиль и уровень их специализации, длительность производственного цикла, коэффициент застройки территории, себестоимость и прибыль. Основными факторами, определяющими тип, сложность и иерархичность (т.е. число уровней предприятия) организационной структуры предприятия, являются: масштаб производства и объем продаж; номенклатура выпускаемой продукции; сложность и уровень унификации продукции; степень развития инфраструктуры региона; международная интегрированность предприятия и др. В зависимости от рассмотренных факторов выбирается тип организационной структуры, предполагающий методы планирования работ производственным подразделениям и контроль их выполнения. Для количественного анализа структуры предприятия используются различные показатели, характеризующие объем выпуска продукции, соотношение между основными, вспомогательными и обслуживающими производствами, эффективность пространственного размещения предприятия, характер взаимосвязей между подразделениями, степень централизации отдельных производств и др. Анализ данных показателей позволяет определить пути создания рациональной структуры предприятия, которая должна обеспечивать максимальную возможность специализации цехов и участков, непрерывность и прямоточность производства, отсутствие дублирующих и чрезмерно раздробленных подразделений, возможность расширения и перепрофилирования производства без его остановки.

Список использованных источников

1. Клепиков, В. В. Технология машиностроения: Учебник / В. В. Клепиков, А. Н. Бодров. – М. : ФОРУМ: ИНФРА-М, 2004.
2. Черепахин, А. А. Технология обработки материалов: Учебник / А. А. Черепахин. – М. : Издательский центр «Академия», 2004. – 272 с.
3. Салтыков, В. А. Технологии машиностроения. Технологии заготовительного производства: Учебное пособие / В. А. Салтыков, Ю. М. Аносов, В. К. Федюкин. – СПб. : Изд-во Михайлова В.А., 2004. – 336 с.
4. Маслов, А. Р. Приспособления для металлообрабатывающего инструмента: Справочник, 2-е изд. исправ. и доп. – М. : Машиностроение, 2002. – 256 с.
5. Берлинер, Ю. И. Технология химического и нефтяного аппаратостроения / Ю. И. Берлинер, Ю. А. Балашов. – М. : Машиностроение, 1996. – 288 с.
6. Шишмараев, В. Ю. Машиностроительное производство: Учебник / В. Ю. Шишмараев, Т. И., Каспина. – М. : Издательский центр «Академия», 2004. – 352 с.
7. Аверченков, В. И. Технология машиностроения: Сборник задач и упражнений: Учеб. пособие / В. И. Аверченков, и др. – М. : Инфра-М, 2006. – 288 с.
8. Медведев, В. А. Технологические основы гибких производственных систем: Учебник / В. А. Медведев, В. П. Вороненко, В. Н. Брюханов. – М. : Высшая школа, 2009. – 255 с.
9. Типовые технологические процессы изготовления аппаратов химических производств. Атлас типовых технологических процессов и чертежей / под ред. А. Д. Никифорова. – М. : Машиностроение, 1989. – 244 с.
10. Ярушин, С. Г. Технологические процессы в машиностроении: учебник для бакалавров / С. Г. Ярушин. – М.: Юрайт, 2011. – 564 с.

Реферат на тему “Производственный и технологический процессы в машиностроении” обновлено: 31 июля, 2017 автором: Научные Статьи.Ру

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • Литература

1. Обоснование выбора заготовки

Оптимальный метод получения заготовки подбирают в зависимости от ряда факторов: материала детали, технических требований по ее изготовлению, объема и серийности выпуска, формы поверхностей и размеров деталей. Метод получения заготовки, обеспечивающий технологичность и минимальную себестоимость считается оптимальным.

В машиностроении для получения заготовок наиболее широко применяют следующие методы:

литье;

обработку металлов давлением;

сварку;

комбинации этих методов.

Каждый из вышеперечисленных методов содержит большое число способов получения заготовок.

В качестве метода получения заготовки принимаем обработку металла давлением. Выбор обоснован тем, что материалом детали является конструкционная сталь 40Х. Дополнительным фактором, определяющим выбор заготовки, является сложность конфигурации детали и тип производства (условно принимаем что деталь изготавливается в условиях серийного производства. Принимаем штамповку на горизонтально-ковочных машинах.

Данный тип штамповок позволяет получать заготовки минимальной массой 0,1 кг, 17-18 квалитета точности с шероховатостью 160-320 мкм в условиях мелкосерийного производства.

заготовка машиностроение маршрут деталь

2. Разработка маршрута обработки детали

Маршрут обработки детали:

Операция 005. Заготовительная. Штамповка на КГШП.

Заготовительный цех.

Операция 010. Фрезерная.

Сверлильно-фрезерно-расточной станок 2254ВМФ4.

1. Фрезеровать плоскость, выдерживая размер 7.

2. Сверлить 2 отверстия D 12,5.

3. Зенкеровать отверстие D 26,1.

4. Зенкеровать отверстие D32.

5. Зенкеровать отверстие D35,6.

6. Развернуть отверстие D36.

7. Зенковать фаску 0,5 х 45 0 .

Операция 015. Токарная.

Токарно-винторезный 16К20.

1. Подрезать торец, выдерживая размер 152.

2. Точить поверхность D37, выдерживая размер 116.

3. Точить 2 фаски 2 х 45 0 .

4. Нарезать резьбу М30х2.

Операция 020. Фрезерная

Вертикально-фрезерный 6Р11.

1. Фрезеровать поверхность, выдерживая размеры 20 и 94.

Операция 025. Вертикально-сверлильная.

Вертикально-сверлильный 2Н125.

Установ 1.

1. Сверлить 2 отверстия D9.

2. Сверлиль отверстие D8,5.

3. Нарезать резьбу К1/8 / .

Установ 2.

1. Сверлить отверстие D21.

2. Сверлить отверстие D29.

Операция 030 Слесарная.

Притупить острые кромки.

Операция 035. Технический контроль.

3. Выбор технологического оборудования и инструмента

Для изготовления детали "Наконечник" подбираем следующие станки

1. Сверлильно-фрезерно-расточной станок с ЧПУ и инструментальным магазином 2254ВМФ4;

2. Токарно-винторезный станок 16К20;

3. Вертикально-фрезерный станок 6Р11;

4. Вертикально-сверлильный станок 2Н125.

В качестве станочных приспособлений используем: для токарной-операции - 4-х кулачковый патрон, для остальных операций - специальные приспособления.

При изготовлении данной детали используется следующий режущий инструмент:

Фреза торцевая с механическим креплением многогранных пластин: фреза 2214-0386 ГОСТ 26595-85 Z = 8, D = 100 мм.

Сверло спиральное с коническим хвостовиком обычной точности, диаметром D = 8,5 мм. с нормальным хвостовиком, класса точности Б. Обозначение: 2301-0020 ГОСТ 10903-77.

Сверло спиральное с коническим хвостовиком обычной точности, диаметром D = 9 мм. с нормальным хвостовиком, класса точности Б. Обозначение: 2301-0023 ГОСТ 10903-77.

Сверло спиральное с коническим хвостовиком обычной точности, диаметром D = 12,5 мм. с нормальным хвостовиком, класса точности Б. Обозначение: 2301-0040 ГОСТ 10903-77.

Сверло спиральное с коническим хвостовиком обычной точности, диаметром D = 21 мм. с нормальным хвостовиком, класса точности Б. Обозначение: 2301-0073 ГОСТ 10903-77.

Сверло спиральное с коническим хвостовиком обычной точности, диаметром D = 29 мм. с нормальным хвостовиком, класса точности Б. Обозначение: 2301-0100 ГОСТ 10903-77.

Зенкер цельный с коническим хвостовиком из быстрорежущей стали, диаметром D = 26 мм. длиной 286 мм для обработки сквозного отверстия. Обозначение: 2323-2596 ГОСТ 12489-71.

Зенкер цельный с коническим хвостовиком из быстрорежущей стали, диаметром D = 32 мм. длиной 334 мм. для обработки глухого отверстия. Обозначение: 2323-0555 ГОСТ 12489-71.

Зенкер цельный с коническим хвостовиком из быстрорежущей стали, диаметром D = 35,6 мм. длиной 334 мм. для обработки глухого отверстия. Обозначение: 2323-0558 ГОСТ 12489-71.

Развертка машинная цельная с коническим хвостовиком D36 мм. длиной 325 мм. Обозначение: 2363-3502 ГОСТ 1672-82.

Зенковка коническая типа 10, диаметром D = 80 мм. с углом при вершине 90. Обозначение: Зенковка 2353-0126 ГОСТ 14953-80.

Резец правый проходной упорный отогнутый с углом в плане 90 o типа 1, сечения 20 х 12. Обозначение: Резец 2101-0565 ГОСТ 18870-73.

Резец токарный резьбовой с пластинкой из быстрорежущей стали для метрической резьбы с шагом 3 типа 1, сечения 20 х 12.

Обозначение: 2660-2503 2 ГОСТ 18876-73.

Метчик машинный 2621-1509 ГОСТ 3266-81.

Для контроля размеров данной детали, применяем следующий мерительный инструмент:

Штангенциркуль ШЦ-I-125-0,1 ГОСТ 166-89;

Штангенциркуль ШЦ-II-400-0,05 ГОСТ 166-89.

Для контроля размера отверстия D36 используем калибр - пробку.

Набор образцов шероховатости 0,2 - 0,8 ШЦВ ГОСТ 9378 - 93.

4. Определение промежуточных припусков, допусков и размеров

4.1 Табличным методом на все поверхности

Необходимые припуски и допуски на обрабатываемые поверхности выбираем по ГОСТ 1855-55.

Припуски на механическую обработку детали "Наконечник"

4.2 Аналитическим методом на один переход или на одну операцию

Расчет припусков аналитическим методом производим для поверхности Шероховатость Ra5.

Технологический маршрут обработки отверстия состоит из зенкерования, чернового и чистового развертывания

Технологический маршрут обработки отверстия состоит из зенкерования и чернового, чистового развертывания.

Расчет припусков производим по следующей формуле:

(1)

где R - высота неровностей профиля на предшествующем переходе;

- глубина дефектного слоя на предшествующем переходе;

- суммарные отклонения расположения поверхности (отклонения от параллельности, перпендикулярности, соосности, симметричности, пересечения осей, позиционное) на предшествующем переходе;

- погрешность установки на выполняемом переходе.

Высоту микронеровностей R и глубину дефектного слоя для каждого перехода находим в таблице методического пособия.

Суммарное значение, характеризующее качество поверхности штампованных заготовок составляет 800 мкм. R= 100 мкм; = 100 мкм; R= 20 мкм; = 20 мкм;

Суммарное значение пространственных отклонений оси обрабатываемого отверстия относительно оси центра определится по формуле:

, (2)

где - смещение обрабатываемой поверхности относительно поверхности используемой в качестве технологической базы при зенкеровании отверстий, мкм

(3)

где - допуск на размер 20 мм. = 1200 мкм.

- допуск на размер 156,2 мм. = 1600 мм.

Величину коробления отверстия следует учитывать как в диаметральном, так и в осевом сечении.

, (4)

где - величина удельного коробления для поковок. = 0,7, и L - диаметр и длина обрабатываемого отверстия. = 20 мм, L = 156,2 мм.

мкм.

мкм.

Величина остаточного пространственного отклонения после зенкерования:

Р 2 = 0,05 Р = 0,05 1006 = 50 мкм.

Величина остаточного пространственного отклонения после чернового развертывания:

Р 3 = 0,04 Р = 0,005 1006 = 4 мкм.

Величина остаточного пространственного отклонения после чистового развертывания:

Р 4 = 0,002 Р = 0,002 1006 = 2 мкм.

При определении погрешности установки д У на выполняемом переходе при определении промежуточного припуска требуется определить погрешность закрепления (погрешность базирования для тел вращения равна нулю). Погрешность закрепления заготовки при закреплении ее в призматическом зажиме: 150 мкм.

Остаточная погрешность при черновом развертывании:

0,05 150 = 7 мкм.

Остаточная погрешность при чистовом развертывании:

0,04 150 = 6 мкм.

Производим расчет минимальных значений межоперационных припусков: зенкерование.

мкм.

Черновое развертывание:

мкм.

Чистовое развертывание:

мкм.

Наибольший предельный размер по переходам определяем последовательным вычитанием от чертежного размера минимального припуска каждого технологического перехода.

Наибольший диаметр детали: d Р4 = 36,25 мм.

Для чистового развертывания: d Р3 = 36,25 - 0,094 =36,156 мм.

Для чернового развертывания: d Р2 = 35,156 - 0,501 = 35,655 мм.

Для зенкерования:

d Р1 = 35,655 - 3,63 = 32,025 мм.

Значения допусков каждого технологического перехода и заготовки принимаем по таблицам в соответствии с квалитетом, используемого метода обработки.

Квалитет после чистового развертывания: ;

Квалитет после чернового развертывания: H12;

Квалитет после зенкерования: H14;

Квалитет заготовки: .

Наименьшие предельные размеры определяем вычетанием допусков от наибольших предельных размеров:

d MIN4 = 36,25 - 0,023 = 36,02 мм.

d MIN3 = 36,156 - 0,25 = 35,906 мм.

d MIN2 = 35,655 - 0,62 = 35,035 мм.

d MIN1 = 32,025 - 1,2 = 30,825 мм.

Максимальные предельные значения припусков Z ПР. МАХ равны разности наименьших предельных размеров. А минимальные значения Z ПР. МIN соответственно разности наибольших предельных размеров предшествующего и выполняемого переходов.

Z ПР. МIN3 = 35,655 - 32,025 = 3,63 мм.

Z ПР. МIN2 = 36,156 - 35,655 = 0,501 мм.

Z ПР. МIN1 = 36,25 - 36,156 = 0,094 мм.

Z ПР. МAX3 = 35,035 - 30,825 = 4,21 мм.

Z ПР. МAX2 = 35,906 - 35,035 = 0,871 мм.

Z ПР. МAX1 = 36,02 - 35,906 = 0,114 мм.

Общие припуски Z О. МАХ и Z О. МIN определяем, суммируя промежуточные припуски.

Z О. МAX = 4,21 + 0,871 + 0,114 = 5, 195 мм.

Z О. МIN = 3,63 + 0,501 + 0,094 = 4,221 мм.

Полученные данные сводим в результирующую таблицу.

Технологические

переходы обработки поверхности

Элементы припуска

Расчетный припуск, мкм.

Допуск д, мкм

Предельный размер, мм.

Предельные значения припусков, мкм

Заготовка

Зенкерование

Развертывание черновое

Развертывание чистовое

Окончательно получаем размеры:

Заготовки: d ЗАГ. =;

После зенкерования: d 2 = 35,035 +0,62 мм.

После чернового развертывания: d 3 = 35,906 +0,25 мм.

После чистового развертывания: d 4 = мм.

Диаметры режущих инструментов отображены в пункте 3.

5. Назначение режимов резания

5.1 Назначение режимов резания аналитическим методом на одну операцию

010 Фрезерная операция. Фрезеровать плоскость, выдерживая размер 7 мм.

а) Глубина резания. При фрезеровании торцевой фрезой глубина резания определяется в направлении параллельном оси фрезы и равна припуску на обработку. t =2,1 мм.

б) Ширина фрезерования определяется в направлении, перпендикулярном к оси фрезы. В = 68 мм.

в) Подача. При фрезеровании различают подачу на зуб, подачу на один оборот и подачу минутную.

(5)

где n - частота вращения фрезы, об/мин;

z - число зубьев фрезы.

При мощности станка N = 6,3 кВт S = 0,14.0,28 мм/зуб.

Принимаем S = 0,18 мм/зуб.

мм/об.

в) Скорость резания.

(6)

Где Т - период стойкости. В данном случае Т = 180 мин. - общий поправочный коэффициент

(7)

- коэффициент учитывающий обрабатываемый материал.

nV (8) НВ = 170; nV = 1,25 (1; с.262; табл.2)

1,25 =1,15

- коэффициент, учитывающий материал инструмента; = 1

(1; с.263; табл.5)

- коэффициент, учитывающий состояние поверхности заготовки; = 0,8 (1; с.263; табл.6)

C V = 445; Q = 0,2; х = 0,15; y = 0,35; u = 0,2; P = 0; m = 0,32 (1; с.288; табл.39)

м/мин.

г) Частота вращения шпинделя.

n (9) n об/мин.

Корректируем по паспорту станка: n = 400 об/мин.

мм/мин.

д) Фактическая скорость резания

(10)

м/мин.

е) Окружная сила.

(11)

n (12)

где n = 0,3 (1; с.264; табл.) 0,3 = 0,97

С P =54,5; Х = 0,9; Y = 0,74; U = 1; Q = 1; W = 0.

5.2 Табличным методом на остальные операции

Назначение режимов резания табличным методом произоводится согласно справочнику режимов резания металлов. Полученные данные вносим в результирующую таблицу.

Режимы резания на все поверхности.

Наименование операции

и перехода

Габаритный размер

Глубина резания, мм.

Подача, мм/об.

Скорость резания, м/мин

Частота вращения шпинделя, об/мин.

Операция 010 Фрезерная

1. Фрезеровать поверхность, выдерживая размер 7

2. Сверлить 2 отверстия 12,5

3. Зенкеровать отверстие 26,1.

4. Зенкеровать отверстие 32.

5. Зенкеровать отверстие 35,6

6. Развернуть отверстие D36

7. Зенковать фаску 0,5 х 45 o

Операция 015 Токарная

1. Подрезать торец, выдерживая размер 152

2. Точить поверхность D37, выдерживая размер 116

3. Нарезать резьбу М30х2

Операция 020 Фрезерная

Фрезеровать поверхность, выдерживая размеры 20 и 94

Операция 025 Вертикально-сверлильная

1. Сверлить 2 отверстия 9

2. Сверлить отверстие 8,5

3. Сверлить отверстие 21

4. Сверлить отверстие 29

6. Компоновка станочного приспособления на одну из операций механической обработки

Проектируем станочное приспособление для вертикально-сверлильного и вертикально-фрезерных станков.

Приспособление представляет собой плиту (поз 1.) на которую с помощью штифтов (поз.8) и винтов (поз.7) монтируются 2 призмы (поз.10). Со стороны одной из призм расположен упор (поз.3) с расположенным в нем пальцем, служащим для базирования заготовки. Прижим детали обеспечивается за счет планки (поз 3), которая одним краем свободно вращается вокруг винта (поз.5), а в другой ее край, имеющий форму прорези, входит винт с последующим прижимом гайкой (поз.12).

Для фиксации приспособления на столе станка в теле плиты выполнены проушены и вмонтированы 2 шпонки (поз.13), служащие для центрования приспособления. Транспортировка осуществляется в ручную.

7. Расчет приспособления на точность механической обработки

При расчете точности приспособления необходимо определить допускаемую величину погрешности е пр, для чего определяем все составляющие погрешности. (в качестве координирующего размера принимаем D29 +0 .2 8)

В общем случае погрешнось определяется по формуле:

где - допуск на координирующий размер. В данном случае Т = 0,28 мм;

- коэффициент точности, учитывающий возможное отклонение рассеяния значений составляющих величин от закона нормального распределения (= 1,0…1,2 в зависимости от количества значимых слагаемых, чем их больше, тем коэффициент меньше), принимаем;

- коэффициент, учитывающий долю погрешности обработки в суммарной погрешности, вызываемой факторами, не зависящими от приспособления: = 0,3…0,5; принимаем = 0,3;

Остальные значения формулы представляют собой совокупность погрешностей, определяемых ниже.

1. Погрешность базирования б возникает при несовпадении измерительной и технологической баз. При обработке отверстия погрешность базирования равна нулю.

2. Погрешность закрепления заготовки е з возникает в результате действия сил зажима. Погрешность закрепления при использовании ручных винтовых зажимов равна 25 мкм.

3. Погрешность установки приспособления на станке зависит от зазоров между присоединительными элементами приспособления и станка, а также от неточности изготовления присоединительных элементов. Она равна зазору между Т-образным пазом стола и установочным элементом. В используемом приспособлении размер ширины паза равна 18H7 мм. Размер установочной шпонки 18h6. Предельные отклонения размеров и. Максимальный зазор и соответственно максимальная погрешность установки приспособления на станке = 0,029 мм.

4. Погрешность износа - погрешность, вызванная износом установочных элементов приспособлений, характеризующее отклонение заготовки от требуемого положения вследствие износа установочных элементов в направлении выполняемых размеров.

Приближенно износ установочных элементов может определяться по следующей формуле:

где U 0 - средний износ установочных элементов для чугунной заготовки при усилии зажима W = 10 кН и базовом числе установок N = 100000;

k 1 , k 2 , k 3 , k 4 - коэффициенты, учитывающие соответственно влияние на износ материала заготовки, оборудования, условий обработки и числа установок заготовки, отличающиеся от принятых при определении U 0 .

При установке на опорные гладкие пластины U 0 = 40 мкм.

k 1 = 0,95 (сталь незакаленная); k 2 = 1,25 (специальное); k 3 = 0,95 (лезвийная обработка стали с охлаждением); k 4 = 1,3 (до 40000 установок)

мкм.

5. Геометрическая погрешность станка е ст после чистовой обработке равна 10 мкм.

6. Погрешность настройки станка на размер е н. ст зависит от типа обработки и выдерживаемого размера. В данном случае е н. ст =10 мкм.

Определяем погрешность приспособления:

мкм.

Суммарная погрешность обработки заготовки по координирующему размеру с использованием приспособления не должна превышать величину допуска Т на него, указанному в чертеже. Приведенное условие имеет вид:

где - статические погрешности, связанные с приспособлением, а также погрешности, в явном виде влияющие на точность изготовления приспособления.

- погрешности, зависящие от технологического процесса и в явном виде на точность изготовления приспособления не влияющие.

Значения погрешностей первой группы найдены выше.

Суммарная погрешность обработки, не зависящая от приспособления определяется как часть допуска на координирующий размер:

мкм

мкм.

мкм. - Условие выполняется.

Литература

1. Справочник технолога машиностроения; - М.: "Машиностроение" под редакцией А.Г. Косиловой, Р.К. Мещеряков; 2 тома; 2003 г.

2. Н.А. Нефедов, К.А. Осипов; Сборник задач и примеров по резанию металлов и режущему инструменту; - М.: "Машиностроение"; 1990 г.

3. Б.А. Кузьмин, Ю.Е. Абраменко, М.А. Кудрявцев, В.Н. Евсеев, В.Н. Кузьминцев; Технология металлов и конструкционные материалы; - М.: "Машиностроение"; 2003 г.

4. А.Ф. Горбацевич, В.А. Шкред; Курсовое проектирование по технологии машиностроения; - М.: "Машиностроение"; 1995 г.

5. В.Д. Мягков; Допуски и посадки. Справочник; - М.: "Машиностроение"; 2002 г.

6. В.И. Яковлева; Общемашиностроительные нормативы режимов резания; 2-е издание; - М.: "Машиностроение"; 2000 г.

7. В.М. Виноградов; Технология машиностроения: введение в специальность; - М.: "Академия"; 2006 г.;

Размещено на Allbest.ru

Подобные документы

    Выбор способа получения заготовки. Анализ технологичности конструкции детали. Выбор методов обработки поверхности заготовки, схем базирования заготовки. Расчет припусков, промежуточных технологических размеров. Проектирование специальной оснастки.

    курсовая работа , добавлен 04.02.2014

    Анализ эксплуатационных свойств и технологичности конструкции детали. Выбор заготовки и способа ее получения. Проектирование техпроцесса обработки. Расчет погрешностей базирования, припусков на обработку, режимов резания, размеров заготовок, норм времени.

    курсовая работа , добавлен 09.03.2014

    Характеристика обрабатываемой детали, материала заготовки. Выбор оптимального метода получения заготовки. Разработка технологического маршрута обработки детали. Центрирование заготовок на токарно-винторезных станках. Расчет приспособления на точность.

    контрольная работа , добавлен 04.12.2013

    Анализ технологичности детали "Диск". Анализ способов получения заготовки и выбор оптимального. Составление технологического маршрута обработки детали. Выбор оборудования и инструментов. Расчет припусков на механическую обработку и режимов резания.

    курсовая работа , добавлен 26.01.2013

    Анализ технологичности детали качественным и количественным методом. Материал вала-шестерни и его свойства. Выбор вида и метода получения заготовки. Разработка маршрута технологического процесса. Расчёт межоперационных припусков, допусков и размеров.

    курсовая работа , добавлен 22.04.2016

    Основные процессы технологии машиностроения. Определение типа производства. Выбор метода получения заготовки. Технологический процесс изготовления детали "Ролик", выбор оборудования, приспособления, режущего инструмента. Расчет припусков и режима резания.

    курсовая работа , добавлен 04.09.2009

    Описание и конструкторско-технологический анализ шестерни ведущей. Назначение детали, описание материала. Выбор вида заготовки и метод её получения. Определение промежуточных припусков, технологических размеров и допусков. Расчёт режимов резания.

    курсовая работа , добавлен 14.01.2015

    Описание служебного назначения конструкции узла, детали. Выбор метода получения заготовки и его техническое обоснование. Расчет межоперационных припусков, допусков и размеров. Техническое нормирование и принципы операции нарезания зубчатого венца.

    курсовая работа , добавлен 22.10.2014

    Описание служебного назначения детали и ее технологических требований. Выбор типа производства. Выбор способа получения заготовки. Проектирование маршрута изготовления детали. Расчет и определение промежуточных припусков на обработку поверхности.

    курсовая работа , добавлен 09.06.2005

    Краткие сведения о детали - вал-шестерня. Материал детали и его свойства. Анализ технологичности. Выбор типа производства и оптимального размера партии. Обоснование метода получения заготовки. Расчет промежуточных припусков. Расчет режущего инструмента.

ПРАКТИКА ОРГАНИЗАЦИИ ПРОИЗВОДСТВА

ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ И ОРГАНИЗАЦИИ ГРУППОВОГО ПРОИЗВОДСТВА В МАШИНОСТРОЕНИИ М.И. Бухалков, д-р экон. наук, профессор,

М.А. Кузьмин, аспирант,

В.В. Павлов, канд. экон. наук, доцент Самарский государственный технический университет, г. Самара

Рассматриваются научные основы организации группового производства на предприятиях машиностроительного комплекса, приводятся практические рекомендации по проектированию и построению графиков работы групповых поточных линий

Групповое производство представляет собой прогрессивную гибкую форму организации прерывных производственных процессов на предприятиях машиностроения, основанную на предметной специализации цехов и участков и типовой унификации технологических процессов. В зависимости от объема рыночного спроса на выпускаемую продукцию, существующего на предприятии направления специализации и достигнутого уровня технологической унификации принято различать шесть основных форм групповой организации производственных процессов. При подетальной специализации производства с применением единичной или типовой форм организации технологических процессов могут иметь место три первичные формы группового производства :

Подетальные специализированные цехи предприятия;

Подетально-специализированные участки цеха;

Многономенклатурные групповые поточные линии с переналадкой станков.

При подетальной специализации производства, сочетающейся с использованием групповой формы организации технологических процессов, создаются следующие вторичные формы группового производства:

Подетально-групповые механосборочные цехи;

Подетально-групповые производственные участки;

Групповые поточные линии с переналаживаемыми станками.

Вторичные формы организации группового производства основаны на повсеместном использовании высокопроизводительного оборудования, быстропе-реналаживаемой технологической оснастки, станков с числовым программным управлением, специальных обрабатывающих центров и специализированных станков и других технологических средств механизации и автоматизации основных и вспомогательных производственных процессов. Как свидетельствует отечественный передовой опыт, групповое производство на предприятиях машиностроения, создаваемое на основе конструктивной классификации выпускаемых изделий, унификации технологических процес-

сов и подетально-групповой специализации производственных подразделений, способствует в характерных для рынка условиях единичного, мелкосерийного и серийного типов производства широкому применению таких присущих для массового производства принципов рациональной организации производственного процесса, как специализация рабочих мест, непрерывность, ритмичность, прямоточность и т.д. С учетом степени полноты использования этих принципов групповое производство продукции может функционировать на предприятии при различных организационных формах и типах производства .

В единичном, мелкосерийном и серийном типах производства методы организации групповых процессов целесообразно использовать при изготовлении разнообразных деталей, сборке изделий и ремонте оборудования в основных и вспомогательных цехах. В крупносерийном и массовом производстве групповые формы его организации рекомендуется применять при высоком уровне специализации и коэффициенте закрепления операций за рабочим местом, равным или превышающим две выполняемые деталеоперации за один месяц, а также при незначительном производственном цикле изготовления деталей.

Коэффициент специализации или закрепления рабочих мест в различных подразделениях машиностроительных предприятий зависит от сочетания двух организационных показателей - объема выпуска и трудоемкости продукции, которые во многом определяют технологические или предметные формы специализации цехов и участков, производственную и организационную структуру предприятия, а также методы и формы организации группового производства. Постепенный переход от технологической формы специализации к подетально-групповой считается одним из важных прогрессивных направлений в совершенствовании организации современного машиностроительного производства.

Высшей формой развития группового производства является в рыночных условиях внедрение при соответствующих объемах выпуска товаров гибких быстропереналаживаемых поточных линий механической обработки деталей и сборки изделий.

Организация группового производства включает в себя следующий комплекс проектных работ, обеспечивающих создание и функционирование специализированных подразделений:

Анализ номенклатуры выпускаемых изделий и основных условий их производства;

Классификация и кодирование обрабатываемых деталей;

Группирование деталей по принятым классификационным признакам;

Унификация деталей и отработка их на технологичность;

Анализ действующих технологических процессов и разработка групповых;

Расчет трудоемкости выполнения групповых технологических процессов;

Определение состава производственных подразделений;

Проектирование организации группового производства изделий;

Определение потребного технологического оборудования в проекте;

Приобретение необходимых средств технологического оснащения;

Опытно-промышленное испытание и внедрение организации группового производства.

Основой организации группового производства, по оценке С.П.Митрофанова, служат унификация конструкций выпускаемых изделий и технологических процессов их изготовления . Важнейшими организационными направлениями конструктивной и технологической унификации в машиностроительном производстве при снижении рыночного спроса на продукцию стали разработка типовых технологических процессов и применение групповых методов обработки деталей. Типовые технологические процессы создаются на изготовление однотипных или стандартизированных деталей и применяются главным образом в крупносерийном и массовом производстве. Групповые технологические процессы разрабатываются на группы подобных по конструктивным или иным признакам деталей и используются в условиях единичного, мелкосерийного и серийного производства.

Типизация методов обработки основана на классификации деталей и их поверхностей. Классификация деталей и технологических процессов строится по схеме класс-группа-тип. Класс представляет собой совокупность деталей определенной конфигурации, характеризуемых общностью конструктивных форм и технологических процессов, например, валы, втулки, шестерни и т.д. Каждый класс разбивается на подклассы и группы, каждая группа - на подгруппы и типы. Группой считается совокупность деталей, объединяемая при обработке общностью оборудования, оснастки, наладки и технологического или операционного процесса. При создании групп учитываются габариты детали, геометрическая форма, общность

подлежащих обработке поверхностей, требуемые ква-литет точности, шероховатость поверхности, однородность заготовок, серийность выпуска, экономичность процесса и многие другие факторы. Группа служит промежуточным звеном классификации деталей, конечная цель которой состоит в установлении типов. Типом называется совокупность сходных деталей, имеющих в конкретных производственных условиях общий технологический процесс.

Типовые технологические процессы предназначаются для производства стандартных и унифицированных деталей, сборки узлов и сложных изделий. На предприятиях машиностроения используется два способа типизации технологических процессов. Первый способ заключается в проведении такой классификации деталей, в результате которой определяется количество существующих конструктивных типов изделий и на каждый из них составляется общий технологический процесс. Второй способ состоит в установлении ряда технологических методов обработки, относящихся к отдельным деталям или к их характерным поверхностям, имеющим конструктивные признаки сходства - основу для построения типовых процессов. Построение типовых процессов осуществляется на конструктивном сходстве или подобии обрабатываемых деталей и их поверхностей, а не на общности средств производства и орудий труда - станков, приспособлений, инструмента. Типовые процессы, характерные для данного конкретного предприятия, должны охватывать все детали, имеющие одинаковый маршрут обработки, однотипные станки, применяемую оснастку, а также режущий и мерительный инструмент. Такие процессы разрабатываются обычно с подробным описанием маршрутной технологии и составлением технологических карт для соответствующих типов деталей, в которых содержится перечень конкретных операций, оборудования и инструмента, режимов обработки, норм времени и других организационно-технических показателей.

Групповые технологические процессы разрабатываются для однородных по тем или иным конструктивно-технологическим признакам видов продукции с использованием унифицированной технологии производства и быстропереналаживаемой оснастки. Г рупповой метод обработки непосредственно связан с унификацией конструкции машин и их элементов, а также с организацией их производства. Чем выше уровень унификации технологии, тем соответственно выше и уровень специализации производства и тем, следовательно, совершеннее могут быть формы его организации на предприятии. Важнейшими организационными предпосылками применения групповых методов в машиностроительном производстве являются следующие:

Правильная классификация и группировка изготовляемых деталей, выполняемых работ и проектируемых технологических процессов;

Подбор и конструирование групповых приспособлений и другой технологической оснастки для осуществления принятой технологии;

Специализация и модернизация технологического оборудования с целью повышения эффективности его использования;

Внедрение групповых поточных и автоматических линий для производства деталей.

Групповой метод как основа унификации технологических процессов и средств их оснащения способствует сокращению их количества на изготовление однотипных деталей и одновременно расширяет применение прогрессивной технологии на производство большой номенклатуры продукции. На машиностроительных предприятиях принято различать два основ-

ных направления технологической унификации: типизация технологических процессов и групповой метод обработки деталей. Оба этих совершенно самостоятельных подходов, взаимодополняющих системное решение на предприятии общих технологических и организационных задач, представлены на рис. 1. Принципиальное их различие заключается в том, что типовые процессы характеризуются общностью последовательности и содержания операций (переходов) при обработке типовой группы деталей, а групповая технология характеризуется общностью оборудования и оснастки при выполнении отдельных операций или при полном изготовлении группы разнотипных деталей.

Унификация технологических процессов

Типизация технологических процессов

Методы групповой обработки

Рис. 1. Схема унификации технологических процессов

Групповые методы организации технологических процессов могут базироваться на различных подходах к классификации деталей и способов их обработки. Задачей любой классификации является установление определяющих признаков, предметов труда, необходимых для правильного группирования проектируемых объектов или выявления их основных свойств и характерных особенностей. Различные конструкции машин и приборов, виды изделий и деталей имеют большое количество одинаковых конструктивных, технологических, организационных и целый ряд иных общих признаков. Групповые процессы на предприятиях машиностроения принято классифицировать по следующим наиболее важным признакам:

По конструктивно-технологическому сходству изготовляемых деталей, в соответствии с которым типовыми совокупностями служат группы валиков, втулок, шпинделей, шлицевых валов, зубчатых колес и т.д.;

По элементарным поверхностям обрабатываемых деталей, позволяющим выбрать необходимый метод изменения их форм и размеров и составить из их комбинации совокупный технологический процесс обработки любой детали, содержащей те или иные

поверхности, например, круглые, плоские, а также пазы, отверстия и т.п.;

По типам применяемого технологического оборудования, включающего соответствующие виды и модели металлообрабатывающих станков, например, токарных, сверлильных, фрезерных, шлифовальных и

По единству используемого технологического оснащения на различных операциях и видах оборудования, к примеру, по общности способов крепления детали, наладки оборудования и т.п.

Кроме того, во всех направлениях классификации групповых процессов обработки учитываются такие признаки, как назначение детали, сложность конструкции, точность и шероховатость поверхностей, сходство технологических маршрутов, объем выпуска продукции, методы оперативного регулирования производства, состав организационно-плановых нормативов и др. На предприятии могут применяться самые разнообразные признаки классификации обрабатываемой продукции, чем подтверждается гибкость группового производства и необходимость его использования в условиях рыночной неопределенности спроса на товары и услуги.

Разработанная С.П.Митрофановым система групповой классификации изделий и процессов строится на общности конструкции деталей, технологии обработки, применяемого оборудования, способов наладки станков, инструментальной оснастки. В основном обрабатываемые детали разбиваются на три характерные группы :

1) детали, имеющие законченный цикл обработки на одном типе оборудования как, например, заготовительные процессы, металлообработка резанием, термические операции, отделочные работы и т.п.;

2) изделия, имеющие общий многооперационный процесс, выполняемый на различных типах технологического оборудования в порядке последовательности операций с применением групповой оснастки;

3) группы деталей, имеющие общий технологический маршрут обработки, осуществляемой на разнотипном оборудовании с соблюдением принципа прямоточности движения обрабатываемых предметов.

Группирование деталей может осуществляться также и по степени унифицированности условий обработки на предприятии. При этом рекомендуется различать два способа группировки деталей:

Детали с унифицированными процессами обработки, когда их объединение проводится либо в пределах одного вида технологического процесса, выполняемого на оборудовании одного типа, либо в пределах нескольких видов обработки на оборудовании различных типов по общности технологических маршрутов;

Детали с частичной унификацией процессов обработки, когда группирование происходит либо нескольких различных изделий по одной технологической операции, либо нескольких смежных операций одной детали по действующему технологическому маршруту.

Группирование деталей во всех случаях должно охватывать номенклатуру реально выпускаемых деталей определенной конструкции. При необходимости можно создавать комплексные или условные детали, имеющие все геометрические элементы деталей данной группы. Комплексной может быть и реальная деталь, имеющая все основные характеристики наиболее сложной в данной группе детали. Выбранная комплексная деталь-представитель служит основой при разработке групповой технологии и групповой оснастки, представляющих собой совокупность приспособлений и инструментов и обеспечивающих обработку всех деталей данной группы при небольших подналадках оборудования. Составленный на комплексную деталь технологический процесс должен обеспечить изготовление любой детали данной группы в полном соответствии с требованиями заказчика к уровню качества и срокам выполнения. Каждый групповой техпроцесс состоит из ряда предусмотренных групповых технологических операций обработки или сборки изделия.

Групповой технологической операцией называется общая для данной группы различных по конструктивным признакам деталей часть техпроцесса, выполняемая с определенной групповой оснасткой на соответствующем оборудовании. Групповая операция охватывает столько деталеопераций, сколько деталей различных типов входит в данную группу. Деталео-перация представляет собой дифференцированный состав технологических переходов при обработке конкретной детали определенной группы, для которой разработана групповая операция. Совокупность групповых операций образуют групповой технологический процесс, обеспечивающий обработку различных деталей одной или нескольких групп по общему технологическому маршруту. При групповом технологическом маршруте некоторые детали или их группы могут не подвергаться обработке на каждой операции, т.е. пропускать отдельные станки или операции. Поэтому при образовании групп деталей с общим технологическим процессом необходимо учитывать объем выпуска отдельных деталей: трудоемкость выполняемых деталеопераций должна обеспечивать нормальную загрузку станков и рабочих-операторов на каждой операции.

Технологические маршруты, не имеющие некоторых операций или переходов, должны обеспечивать не только принцип прямоточности в пространстве, но и принцип пропорциональности работы оборудования во времени. На рис. 2 представлена схема подбора деталей и график работы групповой поточной линии, на которой в течение одной рабочей смены продолжительностью 480 мин обрабатываются на пяти операциях (станках) пять видов деталей. На приведенной схеме маршрут обработки каждой детали показан в виде сплошной линии с уголками, означающими наличие технологической операции. Над линией указано штучное время на операцию, под линией - время цикла обработки партии каждой детали. Так, деталь Б трудоемкостью 15 минут изготовляется в количестве 30 единиц на первой, третьей и пятой операциях, штучное время на которых равно соответственно 6, 4 и 5 мин. В этом случае расчетное время цикла обработки всей партии деталей Б на первой операции составит:

Тобр = N Тшт = 30 6 = 180 мин/партию

где N - размер партии деталей, шт.;

Тшт - штучное время выполнения первой операции, мин/шт.

Время обработки партии деталей на отдельных операциях и общее время прохождения каждой партии изделий по всему технологическому маршруту рассчитывается аналогичным образом по приведенной формуле. Коэффициенты загрузки оборудования могут быть найдены как отношение суммарного времени обработки всех групп деталей по отдельным операциям к продолжительности рабочей смены. Этот показатель при обработке группы деталей на первом станке или операции будет равен:

Тсм - продолжительность рабочей смены, мин.

где У Тобр - суммарное время обработки всех деталей на данной операции (станке), мин;

Группа деталей Расчетные показатели Номер операции (станка)

Тшт Нп-Тшт 1 2 3 4 5

Деталь А 30 12 360 /\ 3 ✓Ч 2 ✓■44 /\ 3

Деталь Б 30 15 450 А6 ✓Ч 4 ✓Ч 5

Деталь В 40 18 720 ^2 ✓"Ч4 ✓"Ч 4 ✓"Ч4 4 /ч 4

80" 160 160 160 160

Деталь Г 26 12 312 "Ч5 /\ 3 ✓Ч4

Деталь Д 18 8 144 у-Ч6 ^ч 2

Группа деталей А+Б+В+Г+Д I N IТ / -< шт I N Тшт Б+В+Г А+В+Д А+Б+В+Г А+В+Г А+Б+В+Д

Суммарные показатели 144 65 1986 390 358 418 384 436

Коэффициент загрузки станков - - 0,83 0,81 0,74 0,87 0,80 0,91

Рис. 2. График работы групповой поточной линии

Коэффициенты загрузки оборудования являются важными организационными показателями эффективности внедрения группового производства. В приведенном примере их индивидуальное значение по отдельным операциям находится в пределах от 0,74 до 0,91 при среднем значении на участке, равном 0,83. Эти коэффициенты свидетельствуют о высокой загрузке и эффективности использования в проекте технологического оборудования, а также о правильном подборе деталей на данном участке группового производства.

На предприятиях коэффициенты загрузки оборудования во многом зависят от соотношения расчетного (проектного) и принятого (установленного) количества рабочих мест (станков), а также от количества и трудоемкости обрабатываемых деталей .

В групповом производстве требуемое число рабочих мест может рассчитываться по каждой отдельной операции или в целом по всему производственному подразделению на основе отношения соответствующей станкоемкости операции или участка к фонду времени работы оборудования. В общем случае количество необходимых рабочих мест на выполнение имеющихся заказов определяется по следующей формуле:

где Собщ - общее количество оборудования на групповом участке, шт.;

суммарная проектная станкоемкость

производственных заказов на участке, станко-час;

Фд - действительный фонд времени работы оборудования, час.

Г одовой фонд рабочего времени единицы оборудования при двухсменном режиме работы составляет примерно 4000 часов, месячный фонд при односменной работе - 175, недельный - 40 часов.

Рассчитанное количество станков на групповом участке распределяется по видам и моделям в соответствии с трудоемкостью (станкоемкостью) выполняемых по заказам работ. Станки на производственном участке располагаются с учетом необходимости соблюдения схемы движения деталей по ранее разработанному технологическому маршруту. В зависимости от принятой формы организации группового производства на участке могут быть использованы различные производственные схемы расположения технологического оборудования: точечная, линейная, ячеистая, технологическая и др. На рис. 3 приведены наиболее распространенные на американских фирмах варианты планировки технологического оборудования в групповом производстве .

Точечная

Т ехнологическая

Линейная

Ячеистая

Рис. 3. Схема планировки оборудования на участке

Как видно, групповое производство способствует экономии производственного пространства и рабочего времени при организации выпуска широкой номенклатуры товаров и услуг на предприятиях машиностроения по заказам основных потребителей продукции. Совершенствование организации группового производства может стать важным фактором модернизации отечественных промышленных предприятий

Таким образом, организация группового производства является в условиях рынка одним из важных направлений создания и функционирования многопродуктовых гибких производственных систем, учитывающих в ходе производства изменение рыночного спроса на продукцию и позволяющих производить товары и услуги высокого качества при наиболее полном использовании имеющихся на каждом предприятии производственных ресурсов.

Кафедра технологии и организации машиностроительного производства

Дисциплина

"Технологические основы машиностроения" (ТОМ)

Конспект лекций

Э.П. Выскребенцев

Для студентов специальности "Металлургическое оборудование"

3-й курс дневного обучения

4-й курс заочного обучения

Основная

1. Ковшов А.Н. Технология машиностроения: учебник для вузов. – М.: Машиностроение, 1987

Дополнительная.

2. Горбацевич А.Ф., Шкред В.А. Курсовое проектирование по технологии машиностроения. – Минск: Вышейша школа, 1985.

3. Воробьев А.Н. Технология машиностроения и ремонт машин: Учебник. – М.: Высшая школа, 1981.

4. Корсаков В.С. Технология машиностроения. – М.: Машиностроения, 1987.

5. Справочник технолога-машиностроителя: в 2 кн. под. ред. Косиловой А. Г, – 3-е изд. – М.: Машиностроение, 1985.

6. Балабанов А.Н. Краткий справочник технолога-машиностроителя. – М.:

Изд. стандарт. 1992.

ВВЕДЕНИЕ 5

1 ТИПЫ ПРОИЗВОДСТВА, ФОРМЫ ОРГАНИЗАЦИИ И ВИДЫ

ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ 6

1.1 Типы производства 6

1.2 Виды технологических процессов 9

1.3 Структура технологического процесса и его основные

характеристики 11

1.3.1 Характеристики технологического процесса 15

1.4 Трудоёмкость технологической операции 16

1.5 Основные принципы технологического проектирования 21

2 ТОЧНОСТЬ МЕХАНИЧЕСКОЙ ОБРАБОТКИ 23

2.1 Точность и её определяющие факторы 23

3 ОСНОВЫ БАЗИРОВАНИЯ И БАЗЫ ЗАГОТОВКИ 27

3.1 Погрешность закрепления ε з, 36

3.2 Погрешность положения заготовки ε пр, вызываемая

неточностью приспособления 37

3.3 Базирование заготовки в приспособлении 38

4 КАЧЕСТВО ПОВЕРХНОСТИ ДЕТАЛЕЙ МАШИН И

ЗАГОТОВОК 41

4.1 Влияние технологических факторов на величину

шероховатости 41

4.2 Методы измерения и оценки качества поверхности 46

5 ЗАГОТОВКА ДЕТАЛЕЙ МАШИН 49

5.1 Выбор исходной заготовки и методов ее изготовления 49

5.2 Определение припусков на механическую обработку 51

6 ОСНОВНЫЕ ЭТАПЫ ПРОЕКТИРОВАНИЯ ТЕХНОЛОГИЧЕСКИХ

ПРОЦЕССОВ МЕХАНИЧЕСКОЙ ОБРАБОТКИ 60

6.1 Общие положения разработки технологических

процессов 60

6.2 Выбор технологического оборудования 63

6.З. Выбор технологической оснастки 64

6.4. Выбор средств контроля 65

6.5. Формы организации технологических процессов и их

разработка 65

6.6. Разработка групповых технологических процессов 67

6.7. Разработка типовых технологических процессов 70

7 ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ ТИПОВЫХ ДЕТАЛЕЙ 72

7.1 Технология производства валов 72

7.2 Технология производства корпусных деталей 82

7.2.1 Технологический маршрут обработки заготовок

корпусов 84

7.3 Технология производства цилиндров 92

7.4 Обработка зубчатых колёс 94

7.4.1 Конструктивные особенности и технические требования к зуб-

чатым колёсам 94

7.4.2 Обработка заготовок зубчатых колёс с центральным отверстием. 95

7.4.3 Нарезание зубьев 97

7.4.4 Изготовление крупногабаритных зубчатых колёс 100

7.4.5 Обработка заготовок до нарезания зубьев 101

7.5 Технология изготовления рычагов 102

8. ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ СБОРКИ 111

ВВЕДЕНИЕ

Технология машиностроения - наука, занимающаяся изучением закономерностей процессов изготовления машин, с целью использования этих закономерностей для обеспечения выпуска машин заданного качества, в установленном производственной программой количестве и при наименьших народнохозяйственных затратах.

Технология машиностроения развивалась с развитием крупной промышленности, накапливая соответствующие методы и приемы для изготовления машин. В прошлом технология машиностроения получила наибольшее развитие в оружейных мастерских и заводах, где изготовлялось оружие в больших количествах.

Так, на Тульском оружейном заводе еще в 1761 г. впервые в мире было разработано и внедрено изготовление взаимозаменяемых деталей и их контроль с помощью калибров.

Технология машиностроения создавалась трудами российских ученых: А.П. Соколовского, Б.С. Балакшина, В.М. Кована, B.C. Корсакова и др,

К технологии машиностроения относятся следующие области производства: технология литья; технология обработки давлением; технология сварки; технология механической обработки; технология сборки машин, т. е. технология машиностроения охватывает все этапы процесса изготовления машиностроительной продукции.

Однако под технологией машиностроения обычно понимают научную дисциплину, изучающую преимущественно процессы механической обработки заготовок и сборки машин к попутно затрагивающие вопросы выбора заготовок методы их изготовления. Это объясняется тем, что в машиностроении заданные формы деталей с требуемой точностью и качеством их поверхностей достигаются в основном механической обработкой. Сложность процесса механической обработки и физической природы, происходящих при этом явлений, вызвана трудностью изучения всего комплекса вопросов в пределах одной технологической дисциплины и обусловила образование нескольких таких дисциплин: резание металлов; режущие инструменты; металлорежущие станки; конструирование приспособлений; проектирование машиностроительных цехов и заводов; взаимозаменяемость, стандартизация и технические измерения; технология конструкционных материалов; автоматизация и механизация технологических процессов и др.

1 ТИПЫ ПРОИЗВОДСТВА, ФОРМЫ ОРГАНИЗАЦИИ И ВИДЫ

ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

1.1 Типы производства

Тип производства - классификационная категория производства, выделяемая по признакам широты номенклатуры, регулярности, стабильности и объема выпуска изделий.

Объем выпуска изделий - количество изделий определенных наименования, типоразмера и исполнения, изготовленных или ремонтируемых объединением, предприятием или его подразделением в течение планируемого интервала времени.

Реализуют следующие типы производства: единичное; серийное; массовое. Одной из основных характеристик типа производства является коэффициент закрепления операций. Коэффициент закрепления операций – отношение числа всех различных технологических операций, выполненных или подлежащих выполнению в течение месяца, к числу рабочих мест.

Единичное производство - производство, характеризуемое широкой номенклатурой изготовляемых или ремонтируемых изделий и малым объемом выпуска изделий.

В единичном производстве изделия изготовляются единичными экземплярами, разнообразными по конструкции или размерам, причем повторяемость этих изделий редка или совсем отсутствует (турбостроение, судостроение). В этом типе производства, как правило, используется универсальные оборудование, приспособления и измерительный инструмент, рабочие имеют высокую квалификацию, сборка производится с использованием слесарнопригоночных работ, т. е. по месту и т. п. Станки располагаются по признаку однородности обработки, т. е. создаются участки станков, предназначенных для одного вида обработки - токарных, строгальных, фрезерных и др.

Коэффициент закрепления операций > 40.

Серийное производство - производство, характеризуемое ограниченной номенклатурой изделий, изготовляемых или ремонтируемых периодически повторяющимися партиями выпуска.

В зависимости от количества изделий в партии или серии и значение коэффициента закрепления операций различают мелкосерийное, среднесерийное и крупносерийное производство.

Коэффициент закрепления операций в соответствии со стандартом принимают равным:

а) для мелкосерийного производства - свыше 20 до 40 включительно;

б) для среднесерийного производства - свыше 10 до 20 включительно;

в) для крупносерийного производства - свыше 1 до 10 включительно.

Основные признаки серийного производства: станки применяются разнообразных типов: универсальные, сспециализированные, специальные, автоматизированные; кадры различной квалификации;

работа может производиться на настроенных станках; применяется и разметка, и специальные приспособления; сборка без пригонки и т. д.

Оборудование располагается в соответствии с предметной формой организации работы.

Станки располагаются в последовательности технологических операций для одной или нескольких деталей, требующиходинакового порядка выполнения операций. В той же последовательности, очевидно, образуется и движение деталей (так называемые, предметно-замкнутые участки). Обработка заготовок производится партиями. При этом время выполнения операций на отдельных станках может быть не согласовано с временем операций на других станках.

Изготовленные детали хранятся во время работы у станков и затем транспортируются всей партией.

Массовое производство - производство, характеризуемое узкой номенклатурой и большим объемом выпуска изделий, непрерывно изготовляемых или ремонтируемых в течение продолжительного времени.

Коэффициент закрепления операций для массового производства принимают равным единице.

Загрузка...