Бизнес портал - StatusPro

Сколько синтез газа из дров. Автомобиль на дровах: как он работает? Золотая эра «газгена» в ссср и за границей

Количество и состав газа зависят, главным образом, от темпера­туры и скорости перегонки. При нормальных условиях газ состоит кз угольной кислоты, окиси углерода и незначительного количества ме­тана, ненасыщенных алифатических углеводородов и водорода. На стр. 51 были указаны выхода этих составных частей древесного газа, по­лученных Klason" OM при сухой перегонке сосны, ели, березы ибука, высчитанные в % отношении к весу сухого дерева. Средний процент­ный состав газа из вышеназванных пород но объему будет такой:

СОз. . . ... . -57,1*

СО....................... - 32,7 «

С4Н4 ■ ... . . -

Bergstrom и Weslen дают следующие цифры состава газа, полученного при сухой перегонке воздушно-сухого хвойного дерева в шведских печах с внутренним нагревом*.

COj...................... 50-56Н

СО................. 28-«он

Сн«................. 18 Н

Тяжелых углеводородов 2-3 Ч Я...... . 0,5-14

Выход этого газа составляет около 18% веса сухого дерева. Содержание в нем метана в размере 18% кажется слишком высоким, так VaK оно соответствует почти всему количеству метоксильных групп в дереве, между тем как другие продукты сухой перегонки также содержат значительное количество метоксила.

По исследованиям F. Fischer"a газы, образующиеся при сухой перегонке дерева в железных ретортах, имеют следующий средний состав по объему, выведенный на основании большого числа ана­лизов:

TOC o "1-3" h z С02 ............................. 59,0*

СО....... . 33,он

СН< ....... . 3,5*

Водорода......................... 3,0*

Состав древесного газа вообще не является постоянным во все время выделения его из перегонного аппарата и меняется в зависи­мости от стадии развития. Вначале из аппарата выделяется только воздух, заключающийся в дереве и аппарате, затем появляется газ, состоящий почти исключительно из СОг и СО и мало горючий. Лишь после того как из дерева улетучилась вся вода, начинается сильное развитие газов с значительным содержанием углеводородов и водо­рода, которые легко горят. В следующей стадии процесса выделение газов уменьшается, но горючесть их не слабеет.

Хотя небольшое количество воздуха в начале сухой перегонки дерева представляет совершенно нормальную часть газа, но в неко­торых случаях, например в таких установках, которые работают при отсасывании древесного газа вентилятором, эта примесь воздуха может значительно увеличиться. Klar приводит пример, когда количество кислорода в газе доходило до 6%. Мне лично приходилось наблюдать в углевыжигательной печи системы А и и н о в а содержание кислорода 2-5 и даже 4°/о, которое часто сопровождалось хлопками, особенно при переводе газов из одного регенератора на другой.

Кроме воздуха, газы, выходящие из холодильника, содержат ещ^ некоторое количество древесного уксуса и смолы, которыми газы насыщаются более или менее, смотря по температуре охлаждающей воды и по давлению, господствующему в холодильных трубах. Чем больше газов образуетсй при сухой перегонке дерева н чем теплее они выходят из холодильника, тем больше потеря уксусной кислоты и особенно древесного спирта, происходящая от насыщения газов составными частями древесного уксуса. Поэтому, во избежание этой потери, нужно, чтобы, во 1-х, количество образующихся газов было минимальным, а это достигается понижением температуры перегонки, во 2-х, чтобы температура газов при выходе их из холодильника не под­нималась выше 20® Ц и в 3-х, доступ воздуха в перегонный аппарат бил Понижен до минимума, таккак вследствие притока воздуха количество газов увеличивается, и происходит вследствие окисления потеря про­дуктов, особенно метилового спирта,

С увеличением количества углеводородов в газах увеличивается их теплотворная способность. Мы уже видели в таблице Юона, что газ в первоначальной стадии своего развития дает только 1100 кал, На 1 куб. м, в конце же перегонки калорийность его достигает 4780 кал. на куб, м.

Если мы возьмем древесный газ указанного F. Fischer"oM со­става, то его теплотворная способность равняется 1312,8 кал., Т.-е. 1 куб, м газа при 1б°Ц и прн атмосферном давлении выделяет при сгорании указанное количество тепла; вес 1 куб, м такого газа ровен 1,479 кг. Полезная калорийность газа в практике значительно понижается, вследствие неизбежной потери тепла, и по расчету рав­няется 864 хал. Практически можно принять, что 100 кг дерева даю* при сухой перегонке максимум 20 - 26 кг газа, т.-е. около 15 куб. м , которые яри полезной теплотворной способности 864 «пи. дадут всего 12 960 кал, Сравнивая ценность этого газа с тео­ретической теплотворной способностью хорошего каменного угля в 7000 «ал. и с практической в 5000 кал, получаем, что данный газ по своей топливной способности может заменить 2,5 кг каменного

5000 I. При подогревании же древесного газа отходящими в ды­мовую трубу топочными газами его топливная ценность может под­няться до калорийности 3,3 кг каменного угля.

Благодаря значительной теплотворной способности древесног* газа на заводах сухой перегонки дерева его не выпускают бесполезна на воздух, а сжигают под ретортами, что дает экономию на каменном угле около 10%, или же его употребляют, как топливо для газовых двигателей, при чем *аз or 100 кг дерева, равноценный 3 хг каменног» угля, развивает энергию, равную 3,75 лошадиных сил в час.

Экология познания.Наука и техника: Самодельный газогенератор на дровах, сделанный своими руками, лучше всего использовать совместно с двигателем внутреннего сгорания. Именно поэтому домашние умельцы приспосабливают его для генерации электроэнергии в домашних условиях, а то и прилаживают установку на автомобиль.

Двигатель внутреннего сгорания, работающий на дровах, - это вовсе не призрак из далекого прошлого. Автомобили и электростанции, использующие древесину в качестве энергоносителя, можно встретить и сегодня. Стоит уточнить: двигатель функционирует на газе, получаемом из дерева путем его сжигания определенным способом. Установки, вырабатывающие такой газ, называют газогенераторами, они достаточно давно применяются на промышленных предприятиях. Но можно ли изготовить газогенератор своими руками и стоит ли это делать – вопросы, ответы на которые призвана дать наша статья.

Как работает газогенератор

Чтобы понять, какая может быть польза от газогенератора в домашнем хозяйстве, надо разобраться в его принципе работы, а потом и устройстве. Тогда можно будет оценить затраты на его изготовление, а главное, какой удастся получить результат.

Итак, пиролизный газогенератор – это комплекс узлов и агрегатов, предназначенный для выделения смеси горючих газов из твердого топлива с целью его использования в двигателях внутреннего сгорания.

Для справки. Конструкции генераторов отличаются друг от друга в зависимости от вида сжигаемого твердого топлива, мы рассмотрим самую актуальную из них – на дровах.

Если древесину сжигать в закрытом пространстве, ограничивая подачу кислорода, то на выходе можно получить смесь горючих газов. Вот их перечень:

  • угарный газ (оксид углерода СО);
  • водород (Н2);
  • метан (СН4);
  • прочие непредельные углеводороды (CnHm).

Примечание. В смеси присутствуют также негорючие балластные газы: двуокись углерода (углекислый газ), кислород, азот и водяные пары.


Эффективный дровяной газогенератор должен не просто вырабатывать горючую смесь, но и сделать ее пригодной к использованию. Поэтому весь цикл получения топлива для ДВС можно смело назвать технологическим процессом, состоящим из таких этапов:

  • газификация: древесина даже не горит, а тлеет при подаваемом количестве кислорода в размере 33-35% от необходимого для полноценного сжигания;
  • первичная грубая очистка: летучие частицы продуктов горения, что вырабатывают древесные газогенераторы после первого этапа, отделяются с помощью сухого вихревого фильтра – циклона;
  • вторичная грубая очистка: производится в скруббере – очистителе, где поток горючего пропускается через воду;
  • охлаждение: продукты сгорания с температурой до 700 ºС проходят его в воздушном либо водяном теплообменнике;
  • тонкая очистка;
  • отправка потребителю: это может быть закачка горючего компрессором в бак-распределитель либо подача в смеситель, а затем - сразу в ДВС.

Рассмотреть устройство и принцип работы газогенератора в промышленном исполнении можно на технологической схеме, представленной ниже:


Полный цикл получения газа достаточно сложен, поскольку включает в себя несколько различных установок. Самая основная – это газогенератор, представляющий собой металлическую колонну цилиндрической либо прямоугольной формы, имеющую сужение книзу. В колонне имеются патрубки для воздуха и выхода газа, а также лючок доступа в зольник. Сверху агрегат оборудован крышкой для загрузки топлива, дымоход к корпусу не присоединяется, он просто отсутствует. Процесс горения и пиролиза, проходящий внутри колонны, хорошо отражает схема газогенератора:

Не вдаваясь в тонкости химических реакций, проходящих внутри колонны, отметим, что на выходе из нее получается смесь газов, описанная выше. Только она загрязнена частицами и побочными продуктами горения и обладает высокой температурой. Изучив чертежи газогенераторов любой конструкции, можно заметить, что все остальное оборудование предназначено для приведения газа в норму. Воздух в зону горения подается принудительно тяговой или дутьевой машиной (простыми словами - вентилятором).


Надо сказать, что самодельный газогенератор на дровах делается домашними мастерами-умельцами не такой сложной конструкции и технология выделения газа в нем несколько упрощена, о чем будет рассказано ниже.

Мифы о газогенераторных установках

На просторах интернета часто встречается множество необоснованных утверждений о работе подобных агрегатов и дается противоречивая информация об использовании газогенераторов. Попытаемся все эти мифы развеять.

Миф первый звучит так: КПД газогенераторной установки достигает 95%, что несоизмеримо больше, нежели у твердотопливных котлов с эффективностью 60-70%. Поэтому отапливать дом с ее помощью куда выгоднее. Информация некорректна изначально, нельзя сравнивать бытовой газогенератор для дома и твердотопливный котел, эти агрегаты выполняют разные функции. Задача первого – вырабатывать горючий газ, второго – нагревать воду.

Когда говорят о генерирующем оборудовании, то его КПД – это отношение количества полученного продукта к объему газа, что возможно выделить из древесины теоретически, помноженное на 100%. Эффективность котла – это отношение вырабатываемой тепловой энергии дров к теоретической теплоте сгорания, также умноженное на 100%. Кроме того, извлечь из органики 95% горючего топлива может далеко не каждая биогазовая установка, не то что газогенератор.

Вывод. Суть мифа в том, что массу либо объем пытаются через КПД сопоставить с единицами энергии, а это недопустимо.

Обогревать дом проще и эффективнее обычным пиролизным котлом, что таким же способом выделяет горючие газы из древесины и тут же их сжигает, используя подачу вторичного воздуха в дополнительную камеру сгорания.

Миф второй – в бункер можно закладывать топливо любой влажности. Загружать-то его можно, да только количество выделяемого газа падает на 10-25%, а то и более. В этом отношении идеальный вариант - газогенератор, работающий на древесном угле, что почти не содержит влаги. А так тепловая энергия пиролиза уходит на испарение воды, температура в топке падает, процесс замедляется.

Миф третий – затраты на обогрев здания снижаются. Это нетрудно проверить, достаточно сравнить стоимость газогенератора на дровах и обычного твердотопливного котла, тоже сделанного своими руками. Плюс нужно водогрейное устройство, сжигающее древесные газы, например, конвектор. Наконец, эксплуатация всей этой системы отнимет немало времени и сил.

Вывод. Самодельный газогенератор на дровах, сделанный своими руками, лучше всего использовать совместно с двигателем внутреннего сгорания. Именно поэтому домашние умельцы приспосабливают его для генерации электроэнергии в домашних условиях, а то и прилаживают установку на автомобиль.


Автомобильный газогенератор

Надо понимать, что газогенератор для автомобиля должен быть достаточно компактным, не слишком тяжелым и в то же время эффективным. Заграничные коллеги, чьи доходы не в пример выше наших, делают корпус генератора, циклон и фильтр охлаждения из нержавеющей стали. Это позволяет брать толщину металла вдвое меньше, а значит, и агрегат выйдет намного легче. В наших реалиях для сборки газогенератора применяют трубы, старые баллоны от пропана, огнетушители и прочие подручные материалы.

Ниже показан чертеж газогенератора, устанавливаемого на старые грузовики УралЗИС-352, по нему и надо ориентироваться при сборке агрегата:

Наружную емкость наши мастера чаще всего делают из баллонов для сжиженного пропана, внутреннюю можно сделать из ресивера грузового автомобиля ЗИЛ или КаМАЗ. Колосниковая решетка выполняется из толстого металла, патрубки – из соответствующего диаметра труб. Крышку с фиксаторами можно изготовить из отрезанного верха баллона либо из листовой стали. Уплотнение крышки – шнур из асбеста с графитной пропиткой.

Грубый фильтр – циклон для авто делают из старого огнетушителя либо простого отрезка трубы. Снизу трубы выполняется конусная насадка со штуцером для выгрузки золы, сверху торец закрывается наглухо привариваемой крышкой. В нее врезается выходной патрубок для очищенных газов, а сбоку – второй штуцер, куда будет осуществляться подача продуктов горения. Функциональная схема циклона в разрезе показана на рисунке:

Поскольку автомобильный газогенератор выдает газы с высокой температурой, их требуется охлаждать. Причины две:

  • раскаленное газообразное топливо имеет слишком малую плотность и поджечь его в цилиндрах ДВС будет непросто;
  • существует опасность самопроизвольной вспышки при контакте с горячими поверхностями мотора.

Движение газов по всему тракту во время розжига обеспечивает вентилятор, а после пуска мотора в системе появляется необходимое разрежение, вентилятор отключается.

Для охлаждения мастера-умельцы применяют обычные ребристые радиаторы отопления, располагая их на автомобиле таким образом, чтобы они максимально обдувались воздухом во время движения. Иногда даже используются современные биметаллические радиаторы. Перед попаданием в газогенераторный двигатель топливо требует тонкой очистки, для этого используют разного рода фильтры на свое усмотрение. Все узлы объединяются в одну установку в соответствии со схемой:


И последняя деталь – смеситель, нужен для регулирования пропорций газовоздушной смеси. Дело в том, что древесный газ имеет теплоту сгорания всего 4.5 МДж/м3, в то время как используемый в автомобилях природный газ - целых 34 МДж/м3. Следовательно, пропорции топлива и воздуха должны быть другими, их потребуется настроить заслонкой.


Заключение

Невзирая на всю привлекательность идеи сжигания дров вместо бензина в современных условиях она практически нежизнеспособна. Долгий розжиг, езда на средних и высоких оборотах, влияющая на ресурс ДВС, отсутствие комфорта, - все это делает действующие установки обычными диковинками, не находящими широкого применения. А вот сделать газогенератор для домашней электростанции – совсем другой вопрос. Стационарный агрегат совместно с переделанным дизельным ДВС может оказаться отличным вариантом электроснабжения дома.опубликовано

Оговоримся сразу: если автомобиль ездит на дровах, это не значит, что он - паровоз без рельсов. Низкий КПД паровой машины с ее отдельной топкой, котлом и цилиндрами двойного-тройного расширения оставил паровые автомобили в числе забытой экзотики. А сегодня мы поговорим о «дровяном» транспорте с привычными нам ДВС, моторами, сжигающими топливо внутри себя.

Разумеется, затолкать дрова (или нечто подобное) в карбюратор вместо бензина пока еще никому не удавалось, а вот идея прямо на борту авто получать из древесины горючий газ и подавать его в цилиндры как топливо прижилась на долгие годы. Речь идет о газогенераторных автомобилях, машинах, чей классический ДВС работает на генераторном газе, который получают из древесины, органических брикетов, или угля. От привычного жидкого топлива, кстати, такие машины тоже не отказываются - они способны работать и на бензине.

Святая простота

Генераторный газ - это смесь газов, состоящая в основном из окиси углерода СО и водорода Н2. Получить такой газ можно, сжигая размещенную толстым слоем древесину в условиях ограниченного количества воздуха. На этом несложном принципе работает и автомобильный газогенератор, простой по сути агрегат, но громоздкий и конструктивно осложненный дополнительными системами.

Также, помимо собственно производства генераторного газа, автомобильная газогенераторная установка охлаждает его, очищает и смешивает с воздухом. Соответственно, конструктивно классическая установка включает в себя сам газогенератор, фильтры грубой и тонкой очистки, охладители, электровентилятор для ускорения процесса розжига и трубопроводы.

НПЗ вожу с собой

Простейший газогенератор имеет вид вертикального цилиндра, в который почти доверху загружается топливо - дрова, уголь, торф, прессованные пеллеты и т.п. Зона горения расположена внизу, именно здесь, в нижнем слое горящего топлива создается высокая температура (до 1 500 градусов по Цельсию), необходимая для выделения из более верхних слоев будущих компонентов топливной смеси - окиси углерода СО и водорода Н2. Далее горячая смесь этих газов поступает в охладитель, который снижает температуру, повышая таким образом удельную калорийность газа. Этот довольно крупный узел обычно приходилось помещать под кузовом машины. Расположенный следом по ходу газа фильтр-очиститель избавляет будущую топливную смесь от примесей и золы. Далее газ направляется в смеситель, где соединяется с воздухом, и окончательно приготовленная смесь направляется в камеру сгорания двигателя автомобиля.


Схема автомобиля ЗИС-21 с газогенератором

Как видите, система производства топлива прямо на борту грузовика или легковушки занимала довольно много места и немало весила. Но игра стоила свеч. Благодаря собственному - и к тому же дармовому - топливу свой автономный транспорт могли себе позволить предприятия, расположенные за сотни и тысячи километров от баз снабжения ГСМ. Это достоинство долго не могло затмить все недостатки газогенераторных автомобилей, а их было немало:

— существенное сокращение пробега на одной заправке;
— снижение грузоподъемности автомобиля на 150-400 кг;
— уменьшение полезного объема кузова;
— хлопотный процесс «дозаправки» газового генератора;
— дополнительный комплекс регламентных сервисных работ;
— запуск генератора занимает от 10-15 минут;
— существенное снижение мощности двигателя.


ЗиС 150УМ, опытная модель с газогенераторной установкой НАМИ 015УМ

В тайге заправок нет

Древесина всегда являлась основным топливом для газогенераторных автомобилей. В первую очередь, конечно, там, где дров в избытке, - на лесозаготовках, в мебельном и строительном производстве. Традиционные технологии лесопереработки при промышленном использовании древесины в эпоху расцвета «газгенов» около 30% от массы леса отпускали в отходы. Их и использовали как автомобильное топливо. Интересно, что правилами эксплуатации отечественных «газгенов» строжайше запрещалось использование деловой древесины, так как и отходов лесной промышленности было с избытком. Для газогенераторов годились как мягкие, так и твердые породы дерева.

Единственное требование - отсутствие на чурках гнили. Как показали многочисленные исследования, проведенные в 30-е годы в Научном автотракторном институте СССР, лучше всего в качестве топлива подходят дуб, бук, ясень и береза. Чурки, которыми заправлялись котлы газогенераторов, чаще всего имели прямоугольную форму со стороной 5-6 сантиметров. Сельскохозяйственные отходы (солома, лузга, опилки, кора, шишки и пр.) прессовали в специальные брикеты и также «заправляли» ими газогенераторы.

Главным недостатком «газгенов», как мы уже говорили, можно считать малый пробег на одной заправке. Так, одной загрузки древесными чурками советским грузовикам (см. ниже) хватало не более чем на 80-85 км пробега. Учитывая, что «заправляться» руководство по эксплуатации рекомендует при опустошении бака на 50-60%, то и вовсе пробег между заправками сокращается до 40-50 км. Во-вторых, сама установка, вырабатывающая генераторный газ, весит несколько сотен килограммов. К тому же двигатели, работающие на таком газе, выдают на 30-35% меньше мощности, чем их бензиновые аналоги.

Доработка автомобилей под дрова

Для работы на генератором газе автомобили приходилось приспосабливать, но изменения не были серьезными и порой были доступны даже вне заводских условий. Во-первых, в моторах повышали степень сжатия, чтобы не так существенна была потеря мощности. В некоторых случаях для улучшения наполнения цилиндров двигателя применялся даже турбонаддув. На многие «газифицированные» авто устанавливался генератор электрооборудования с повышенной отдачей, поскольку для вдувания воздуха в топку использовался достаточно мощный электровентилятор.


ЗИС-13

Для сохранения тяговых характеристик, в особенности это касалось грузовиков, при снизившейся мощности двигателя передаточные числа трансмиссии делали более высокими. Скорость движения падала, но для автомобилей, использующихся в лесной глуши и прочих пустынных и отдаленных районах это не имело решающего значения. Чтобы компенсировать изменившуюся из-за тяжелого газогенератора развесовку, в некоторых машинах усиливали подвеску.

Помимо того, из-за громоздкости «газового» оборудования отчасти приходилось перекомпоновывать автомобиль: менять, сдвигать грузовую платформу или урезать кабину грузовика, отказываться от багажника, переносить выхлопную систему.

Золотая эра «газгена» в СССР и за границей

Эра расцвета газогенераторных автомобилей пришлась на 30-40-е года прошлого века. Одновременно в нескольких странах с большими потребностями в автомобилях и малыми разведанными запасами нефти (СССР, Германия, Швеция) инженеры крупных предприятий и научных институтов взялись за разработку автотранспорта на дровах. Советские специалисты больше преуспели в создании грузовых автомобилей.


ГАЗ-42

С 1935 года и до самого начала Великой Отечественной войны на разных предприятиях Министерства лесной промышленности и ГУЛАГа (Главное Управление ЛАГерей, увы, реалии той поры) «полуторки» ГАЗ-АА и «трехтонки» ЗИС-5, а также автобусы на их базе переделывались для работы на дровах. Также отдельными партиями газогенераторные версии грузовиков производились самими заводами-изготовителями машин. Например, советские автоисторики приводят цифру 33 840 - столько было выпущено газогенераторных «полуторок» ГАЗ-42. Газогенераторных ЗИСов моделей ЗИС-13 и ЗИС-21 в Москве выпущено более 16 тыс. единиц.


ЗИС-21

За довоенное время советскими инженерами было создано более 300 различных вариантов газогенераторных установок, из которых 10 дошли до серийного производства. Во время войны серийными заводами были подготовлены чертежи упрощенных установок, которые могли изготавливаться на местах в автомастерских без применения сложного оборудования. По воспоминаниям жителей северных и северо-восточных регионов СССР, грузовики на дровах можно было встретить в глубинке вплоть до 70-х годов ХХ века.

В Германии во время Второй Мировой войны наблюдался острый дефицит бензина. КБ двух компаний (Volkswagen и Mercedes-Benz) получили задание разработать газогенераторные версии своих популярных компактных машин. Обе фирмы в довольно сжатые сроки справились с поставленной задачей. На конвейер встали Volkswagen Beetle и Mercedes-Benz 230. Интересно, что у серийных авто дополнительное оборудование даже не выступало за стандартные габариты «легковушек». В Volkswagen пошли еще дальше и создали опытный образец «дровяного» армейского Volkswagen Тур 82 («кюбельваген»).


Volkswagen Тур 82

Дровяные машины сегодня

К счастью, главное достоинство газогенераторных автомобилей - независимость от сети АЗС, сегодня стало малоактуальным. Однако в свете современных экологических веяний на первый план вышло другое достоинство автомобилей на дровах - работа на возобновляемом топливе без какой-либо его химической подготовки, без дополнительной траты энергии на производство топлива. Как показывают теоретические расчеты и практические испытания, мотор на дровах меньше вредит атмосфере своими выбросами, чем аналогичных двигатель, но уже работающий на бензине или солярке. Содержание выхлопных газов очень схоже с выбросами ДВС, работающих на природном газе.

И тем не менее тема с автомобилями на дровах утратила свою былую популярность. Забыть о газогенераторах не дают в основном инженеры-энтузиасты, которые ради экономии на топливе или в качестве эксперимента переоборудуют свои личные машины для работы на генераторном газе. На постсоветском пространстве есть удачные примеры «газгенов» на базе легковушек АЗЛК-2141 и ГАЗ-24, грузовика ГАЗ-52, микроавтобуса РАФ-2203 и пр. По словам конструкторов, их творения могут проезжать на одной заправке до 120 км со скоростью 80-90 км/ч.


ГАЗ-52

К примеру, переведенный житомирскими инженерами в 2009 году на дрова ГАЗ-52 расходует около 50 кг древесных чурок на 100 км пробега. По словам конструкторов, подкидывать дровишки нужно каждые 75-80 км. Газогенераторная установка традиционно для грузовиков расположилась между кабиной и кузовом. После розжига топки должно пройти около 20 минут, прежде чем ГАЗ-52 сможет начинать движение (в первые минуты работы генератора выработанный им газ не имеет нужных горючих свойств). По расчетам разработчиков, 1 км на дровах обходится в 3-4 раза дешевле, чем на дизельном топливе или бензине.



Газогенераторная установка ГАЗ-52

Единственная на сегодняшний день страна, в которой массово используются автомобили на дровах, - это Северная Корея. В связи с тотальной мировой изоляцией там наблюдается определенный дефицит жидкого топлива. И дрова снова приходят на выручку тем, кто оказался в нелегком положении.

Природный газ – это самый дешевый источник энергии для системы отопления. Но в наши дни газ стоит не так уж и дешево. Поэтому многие домовладельцы предпочитают использовать в системах отопления альтернативные газогенераторы, работающие на дровах или опилках.

И в данной статье мы рассмотрим процесс создания такого газогенератора. Изучив этот материал, вы сможете собрать дровяной газогенератор своими руками и воспользоваться всеми преимуществами альтернативного способа отопления.

Горючий газ можно добыть не только из скважины. Например, если нагреть дрова до 1100 градусов Цельсия, ограничивая доступ кислорода в зону окисления топлива, то процесс горения перейдет в стадию термического разложения – пиролиза. Итогом пиролиза будет преобразование целлюлозы в низкомолекулярные олефины – горючие газы этилен и пропилен.

Причем КПД «пиролизного» котла в 1,5-2 раза выше, чем у обычного твердотопливного «нагревателя» . Ведь выделяемые в процессе пиролиза низкомолекулярные олефины выделяют в процессе горения намного больше энергии, чем сгорающая целлюлоза.

В итоге, генератор на опилках, дровах, жмыхе или любом другом источнике целлюлозы функционирует по следующей схеме:


  • В первичной камере сгорания, в результате классического пиролиза, целлюлоза переходит в низкомолекулярные олефины.
  • На следующем этапе полученные в результате пиролиза олефины проходят сквозь ряд фильтров, очищающих горючие газы от примесей – уксусной и муравьиной кислоты, сажи, золы и так далее.
  • После фильтрации газы нужно охладить, поскольку разогретое топливо отдает меньше энергии на финальной стадии окисления.
  • Далее охлажденные газы переходят во вторичную камеру сгорания, где происходит окончательное окисление (горение) сопровождаемое выделением энергии, поглощаемой стенками (корпусом) котла. Причем во вторичную камеру сгорания газов закачивается отдельная порция воздуха, поскольку первичная камера функционирует в условиях ограниченного поступления кислорода.

Разогретые стенки котла можно соединить с водяной «рубашкой», превратив газогенератор в обычный водонагревательный котел, или использовать в качестве нагревательного элемента воздушного конвектора.

Почему это выгодно?

Построив древесный газогенератор своими руками, вы сможете рассчитывать на следующие выгоды:

  • Уменьшенный расход топлива. Ведь КПД котла с газогенератором равно 90-95 процентам, а у твердотопливного котла – всего 50-60 процентов. То есть, на обогрев одного и того же помещения газогенератор потратит не более 60 процентов топлива, расходуемого обычным твердотопливным котлом.
  • Продолжительный процесс горения. Пиролиз дров происходит за 20-25 часов, а процесс термического разложения древесного угля заканчивается за 5-8 суток. Следовательно, загрузку дров в котел можно проводить всего раз в сутки . А если вы пользуетесь древесным углем, то «зарядка» котла осуществляется раз в неделю!
  • Возможность использовать в качестве топлива любой источник целлюлозы – от жмыха и соломы, до живой древесины с влажностью около 50 процентов. То есть о «сухости» дров можно уже не заботиться. Причем в топку некоторых моделей газогенераторных котлов можно отгружать даже метровые поленья, без предварительного измельчения (колки).
  • Отсутствие потребности в чистке и дымохода, и поддувала. Пиролиз утилизирует топливо практически без остатка, а продукт окисления олефинов – это обычный водяной пар.

Кроме того, необходимо отметить и возможность полностью автоматизировать процесс работы котла.

Разумеется, полностью автоматический газогенератор своими руками вам не создать, но промышленные модели могут работать неделями, потребляя топливо из бункера и управляя процессом разогрева теплоносителя без участия оператора.

К отрицательной стороне практики использования газогенераторов на дровах относятся следующие факты:

  • Такой котел стоит очень дорого. Цена самого дешевого варианта «пиролизного» котла в два раза выше стоимости твердотопливного аналога. Поэтому самые рачительные хозяева предпочитают строить газогенератор на дровах своими руками.
  • Такой котел работает на электричестве, расходуемом на энергообеспечение систем надува воздуха в камеры сгорания. То есть, если нет электричества – нет и тепла. А обычная печь будет «работать» где угодно.
  • Котел генерирует стабильно высокую мощность. Причем снижение интенсивности нагрева спровоцирует сбой в работе всей системы – вместо горючих олефинов во вторичную камеру пойдет обычный деготь.

Но все недостатки «окупаются» обилием положительных характеристик и экономичной работой нагревательного прибора. Поэтому приобретение газогенератора, а тем более самостоятельное строительство такого «отопительного прибора» – это очень выгодное дело. И ниже по тексту мы опишем процесс создания дровяного газогенератора.

Как сделать газогенератор своими руками?

Перед сборкой газогенератора и трансформацией данного прибора в отопительный котел нам нужно заготовить узлы и детали, из которых и будет собираться этот агрегат.

Причем классическое устройство газогенератора на дровах предполагает использование в процессе сборки следующих комплектующих:

  • Во-первых, корпуса – основы будущего агрегата, во внутренней части этого узла будут установлены все составные элементы котла. Корпус собирается из уголков и листовой стали, предварительно раскроенных и нарезанных по шаблонам и чертежам.
  • Во-вторых, бункера – емкости для хранения топлива (дров, древесного угля, паллет и так далее). Бункер собирается из листового проката и крепится в корпусе. Причем под этот узел можно выделить часть внутреннего пространства корпуса, разграничив ее с помощью металлических плит из низкоуглеродистой стали.
  • В-третьих, камеры сгорания – ее размещают в нижней части бункера. Ведь основная задача этого узла – это генерирование высокой температуры, поэтому камеру изготавливают из жаропрочной стали. А крышку бункера – герметизируют, препятствуя несанкционированному насыщению камеры сгорания кислородом.
  • В-четвертых, горловины камеры сгорания – особого участка, где реализуется крекинг смол. Эту деталь камеры отделяют от корпуса с помощью асбестовых прокладок.
  • В-пятых, коробки воздухораспределителя – особого узла, размещаемого вне корпуса. Причем врезка штуцера воздухораспределителя в корпус осуществляется посредством обратного клапана. Этот узел обеспечивает приток кислорода в камеру сгорания олефинов, препятствуя выходу горючих газов из камеры сгорания.
  • В-шестых, комплекта фильтров и патрубка, соединяющего горловину камеры сгорания дров с камерой сгорания олефинов.

Кроме того, нам понадобится колосниковая решетка – она нужна для отделения углей в камере сгорания, лучки и дверцы – они обеспечивают доступ в полости корпуса, в том числе и в бункер или камеру сгорания.

Подготовив все указанные элементы, мы можем приступать к сборке газового генератора, осуществляемой по следующему плану:

  • Вначале собирают корпус.
  • Затем в корпусе обустраивают бункер с камерой сгорания, дополняя конструкцию колосниками и приточным каналом (поддувалом).
  • Горловину камеры сгорания дров соединяют патрубком с камерой горения олефинов. Причем в патрубок можно вывести на систему охлаждения газов, монтируемую за пределами корпуса.
  • В верхней части корпуса собирают коробку воздухораспределителя, предварительно подготовив ввод в камеру сгорания олефинов с помощью обратного клапана.
  • Далее на петли монтируют дверцу в бункер и лючки в камеры сгорания (и дров и олефинов).

Собранный таким образом котел оборудуют воздушными компрессорами (воздухораспределитель и приточный канал в камеру сгорания дров) и вытяжной трубой (дымоходом). Ну а в самом конце на корпус котла, желательно в зоне вторичной камеры сгорания, монтируют водяную рубашку с приточным и выпускным штуцером, в которой будет циркулировать теплоноситель. Причем рубашку можно разместить в двойных стенках корпуса или камеры сгорания олефинов.

Исторически лесохимия возникла задолго до появления нефтехимии. Углежогное дело, например, имеет тысячелетнюю историю, а угольщик (англ. charcoal-burner или collier, нем. Köhler) является персонажем многих народных сказок. В старину выделку древесного угля осуществляли в буртах или ямах, сейчас для этого используют специальное оборудование. Европа потребляет большое количество древесного угля и сейчас. В России лесохимические производства начали интенсивно развиваться в петровскую эпоху.

Вопросами лесохимии занимались известные отечественные химики Д.И. Менделеев, В.Е.Тищенко, Е.И.Орлов и др.

В советский период многочисленные лесохимические (биохимические) фабрики имелись едва ли не в каждой области и республике СССР. С развитием нефтехимии лесохимические предприятия несколько утратили свое значение и некоторые из них были перепрофилированы на выпуск другой продукции. Например, известная московская фабрика мягкой мебели "Кузьминки" в 50-е годы прошлого века была лесохимическим заводом. В период "перестройки" многие отечественные лесобиохимические заводы по ряду объективных и субъективных причин обанкротились, как впрочем, и многие другие высоко технологические предприятия. Поэтому уксусную кислоту и др. продукты лесохимии наша страна сейчас импортирует.

За рубежом дело обстоит иначе. Интерес к использованию биологических возобновляемых ресурсов (биомассе) постоянно возрастает. Биома́сса (биоматерия, биота)- совокупная масса растительных и животных организмов, присутствующих в биогеоценозе планеты составляет примерно 2,4 ∙ 10 12 т, 97 % из этого количества занимают растения и 3 % – животные организмы. Техническая переработка биоресурсов (biorafinery) является одной из наиболее быстрорастущих отраслей науки, техники и бизнеса.

Ресурсы биомассы для газификации

В нашей стране экономически доступного биологического сырья очень много - дрова, кора, ветви, пни и др. лесосечные отходы, отходы деревообрабатывающих и мебельных производств, лигнин, отходы зерноочистительных производств, различные виды соломы и стеблей растений (пшеница, рис, лен, кукуруза, подсолнечник, хлопчатник и пр.), тростник, плодовые косточки и ореховая скорлупа, различные промышленные и бытовые отходы. Во многих местах сырье для газификации буквально валяется под ногами. По разным оценкам в Россия ежегодно накапливается до 300 млн. тонн различных органических отходов, в т.ч. до 50 млн. т. бытового мусора .

Некоторые свойства различных лигносодержащих отходов в сравнении с каменным углем:

Сырье
Теплотворная способность
мДж/кг
Влажность
%
Зола
%
каменный уголь
25-32
1-10
0,5-6
древесина
10-20
10-60
0,2-1,7
солома
14-16
4-5
4-5
рисовая шелуха
13-14
9-15
15-20
хлопчатник
14
9
12
кукуруза
13-15
10-20
2-7

Существует шесть основных направлений использования энергетического потенциала биологического сырья и отходов:



Газификация биомассы является одним из наиболее дешевых и экологически безопасных способов получения электрической и тепловой энергии. Существует два прямых способа получения газа из биомассы - микробиологический и термический (пиролитический). Древесина содержит мало воды и довольно медленно поддается биоразложению. Поэтому для нее и большинства целлюлоза- и лигниносодержащих отходов наиболее простым и эффективным способом газификации является термическая (пиролитическая) газификация.

Что такое пиролиз?

Пиролиз (от греч. pyr - огонь и lysis - разложение) - представляет собой процесс термического разложения органических соединений под действием высокой температуры. Простейшим видом пиролиза является обычное горение материалов (дров, угля, торфа и пр.) в костре, на пожаре или в печи, а процессы пиролиза органики играют важную роль в кулинарии. Пиролиз иногда называют еще сухой перегонкой (dry distillation).

Пиролиз является одним из важнейших химических процессов, используемых в энергетике и различных промышленных производствах - металлургии, нефтехимии и пр. Например, методом пиролиза получают такие экономически и технически важные вещества как древесный уголь, кокс, дивинил, этилен, пропилен, бензол и др. В промышленности пиролизу подвергают нефть, уголь, торф, древесину, сельскохозяйственные отходы, промышленные отходы, бытовой мусор и пр.

Пиролиз является одним из важных направлений в лесохимии и используется для выработки древесного угля, скипидара, дегтя, уксусной кислоты, метилового спирта, ацетона и др. веществ.

Промышленный пиролиз древесины и др. видов биомассы - это сложный химический процесс, происходящий в виде разнообразных реакций и превращений и осуществляется в ограниченном (регулируемом) присутствии кислорода воздуха. Универсального описания процессов, происходящих при пиролизе биомассы не существует, т.к. эти процессы многокомпонентные и многофакторные.

В зависимости от условий процесса (вида сырья, степени его измельчения, температуры, давления, концентрации кислорода, воды, присутствия катализаторов) и конструкции реактора (печи, колонны, реторты и т.п.) пиролиз происходит по разному с выходом различных твердых, жидких и газообразных веществ. Типов пиролитических реакторов (печей, реторт, колонн и пр.) существует несколько десятков. Следует иметь ввиду, что разные виды целлюлозосодержащего сырья имеют различающийся химический состав, что в определенной степени влияет на выход получаемых продуктов пиролиза.

Термическое разложение сложных органических соединений биологического происхождения начинается при температурах близких к 100 ° С. Разложение основных веществ древесины в ходе пиролиза начинается при температуре около 200 ° С, однако главные процессы происходят при температурах 400-800 ° С. В некоторых случаях пиролиз органики проводят при еще более высоких температурах 1300-1800 ° С, в т.ч. с использованием электрических плазмогенераторов.

В состав древесины входит 45–60% целлюлозы, 15–35% лигнина и 15–25% гемицеллюлоз, а также пектаты кальция и магния, смолы, камеди, жиры, танины, пигменты и минеральные вещества. Сухое вещество древесины содержит около 50% углерода, 6% водорода, 44% кислорода, около 0,2 % азота и не более 1 % серы. Содержание минеральных веществ (зольность) древесины 0,2 - 1%. В древесных сучьях золы может быть до 2%, в корнях до 5%. От 10 до 25% процентов древесной золы (Na2CO3 и K2CO3) растворимы в воде, из нерастворимых веществ золы важнейшими являются известь, углекислые, кремнекислые и фосфорнокислые соли магния, железа и марганца. Температура плавления древесной золы 1400 ° С.

Существуют различные виды пиролизных систем, ориентированные на получение различных твердых, жидких и газообразных продуктов - древесного угля, спирта, кислоты, жидкого синтетического топлива и генераторного газа и др.

При пиролизе на древесный уголь полезный выход составляет примерно до 1 т угля из 8 - 12 плотных кубометров дров. Энергия, выделяющаяся в этом процессе, используется в главным образом на его обеспечение. При газификации биомассы, напротив, подавляющая часть сырья превращается в горючий высококалорийный газ, обеспечивающий выработку электроэнергии (примерно 1000 кВт/ч из 1,4 - 1,8 тонны сырья).

В последнее время связи с необходимостью экономии углеводородных топлив интерес к газификации твердых топлив возрос. К достоинствам газификации древесины и др. видов биомассы, в отличие от обычного сжигания в топках, следует отнести незначительное количество веществ, загрязняющих окружающую среду т.е. благоприятные экологические показатели по сравнению с другими энергетическими технологиями.

Получение генераторного газа и выработка электроэнергии

Сейчас на промышленных предприятиях отходы древесины и др. биопродукты в лучшем случае сжигаются в печах и топках котлов, которые загружают измельченной щепой или топливными гранулами. Однако, стандартные топки имеют низкий КПД, требуют регулярной очистки и ремонтов, а в атмосферу в виде дыма выбрасываются не сгоревшие сложные и вредные углеводородные соединения и зольная пыль.

Генераторный газ, как топливо, имеет несомненные преимущества перед прямым сжиганием древесины и др. видов биомассы. Генераторный газ, подобно природному газу, может быть передан на большое расстояние по трубопроводам и в баллонах; его удобно использовать в быту для приготовлении пищи, для отопления и нагревания воды, а также в технологических и силовых установках. Сжигание газа легко автоматизировать; продукты сгорания менее токсичны, чем продукты прямого сжигания древесины и др. видов биомассы.

Генераторный газ используется как сырье для дальнейшей химической переработки и в качестве удобного и эффективного топлива для горелок сушилок, печей, котлоагрегатов, газовых турбин, но чаще, - газопоршневых установок. Таким образом по свойствам он похож на природный газ и может использоваться взамен последнего.

Технология газификации твердых топлив для получения горючего газа не является новой. Пионерами газификации были британцы, немцы и французы (прибл. 1805 - 1815 г.г .). Сначала газ использовался для только для освещения улиц и жилищ при помощи фонарей и ламп, а затем и как топливо. В Москве оборудование для получения искусственного газа появилось на полвека позднее (1865 г.). Тогда английские подрядчики получили монопольное право на освещение города, а также на беспошлинный ввоз оборудования для строительства завода по производству искусственного газа, газопроводов, фонарей, горелок, счетчиков и пр. Уголь для газификации также ввозился из Англии. К 1905 г. Москва располагала 215 верстами газовых сетей, 8735 газовыми фонарями и 3720 частными потребителями газа (историческая справка Мосгаза). Природный газ в Москве появился только в 1946 г. (магистральный газопровод Саратов-Москва) . До нач. 60-х годов в СССР газификация твердых топлив была распространена достаточно широко: более 350 газогенераторных установок вырабатывали из разл. типов твердых топлив около 35 млрд. м3/год генераторных газов разного назначения.

То есть первоначально газовая промышленность занималась изготовлением и распределением генераторного газа и только в середине 20 века стала переходить к газу натуральному.

В 20-50 г.г. прошлого века дровяные газогенераторы устанавливались на автомобили, автобусы, трактора и другую технику, которая изготавливалась серийно (напр. отечественные автомобили ГАЗ-42, ЗИС-21). В лесной промышленности газогенераторными установками оборудовались лесовозные машины и трелёвочные тракторы. На фото показан немецкий мотоцикл, оборудованный весьма компактным газогенератором. После войны транспортные газогенераторы еще долго хранились в мобилизационном резерве.

Связанная с развитием нефтехимии дешевизна электроэнергии и моторных топлив не стимулировала развития малой и альтернативной электроэнергетики. Сейчас ситуация в нашей стране быстро меняется в пользу применения альтернативных источников энергии т.к. даже простое подключение предприятия или хозяйства к электрической или газовой сети часто становится серьезной проблемой.

Разработкой газификационных установок для древесины и др. твердых топлив сейчас занимаются многие зарубежные и отечественные институты и компании. На отечественном рынке уже есть предложения малогабаритных газификационных установок для фермеров и т.п., но промышленным предприятиям и лесным поселкам нужны более мощные энергетические установки. Газогенераторные установки различаются по мощности: малой – до 100 кВт; средней – от 100 до 1000 кВт; большой мощности – свыше 1000 кВт. Существуют много типов и десятки конструкций газогенераторов, используемых для газификации отходов древесины и др. видов биомассы. Наиболее популярные из них генераторы прямого и обратного горения, а также генераторы с кипящим слоем.

В газогенераторных установках происходит не только пиролиз; правильнее это процесс называют частичным
(т.е. неполным) окислением углерода (partial oxidation) . В газогенераторе сырье проходит четыре этапа преобразования в газ:



Первый этап - быстрое высыхание материала под действием высокой температуры; второй - термическое разложение (пиролиз) биомассы с образованием угля и дегтя, с последующим его испарением и преобразованием в смоляной газ; третий - сгорание органических соединений смоляного газа и части угля; и четвертый, - восстановление на поверхности раскаленного угля двуокиси углерода СО 2 до ее моноокиси CO, а воды Н 2 O - до водорода Н 2 .

Большая часть реакций происходящих в газогенераторах является экзотермическими, т.е. происходят с выделением энергии. Основными химическими элементами, участвующими в процессе превращения биомассы в газ являются углерод, кислород воздуха и вода. Окислителями являются кислород, двуокись углерода и водяной пар (реакции 1-3). Основными химическими реакциями происходящими при газификации древесины считают:

С + 0,5 О 2 → СО 2 - 109,4 кДж/моль (1)
С + СО 2 → 2СО + 172,5 кДж/моль (2)
С + Н 2 O → СО + Н 2 + 131,2 кДж/моль (3)

С + О 2 →2СО 2 - 284,3 кДж/моль (4)

СО + H 2 О ↔СО 2 +Н 2 ± 131,4 кДж/моль (5)

С + 2Н 2 → СН 4 + 74,8 кДж/моль (6)
СО+ 3Н 2 → СН 4 + H 2 О - 206,2 кДж/моль (7)
СО+ Н 2 → 0,5СН 4 + 0,5 СО 2 - 123,8 кДж/моль (8)

Прямой продукт газификации твердых топлив (т. н. сырой газ) всегда содержит некоторые количества углекислого газа СО2, воды H2О, метана СН4 и, кроме того, иногда и высших углеводородов, а при использовании воздуха - еще и NО2. Вследствие наличия в биомассе небольшого количества серы образуется H2S. Скорость газификации твердых топлив существенно зависит от температуры. С повышением давления увеличивается концентрация СН4. Состав получаемого газа зависит от схемы газогенератора и режима процесса.

Выходящий из газогенератора газ имеет высокую температуру и содержит большое количество примесей (золу и смолы), поэтому газогенераторные установки комплектуются специальными системами охлаждения и очистки газа.

Для решения задачи обеспечения автономного энергоснабжения удаленных потребителей с тепловой нагрузкой до нескольких мегаватт и утилизации отходов растительной биомассы наиболее эффективно использование технологии термохимической газификации в аппаратах слоевого типа с воздушным дутьем. Данные установки наиболее просты в конструктивном оформлении и при эксплуатации. Получаемый газ имеет теплоту сгорания 3,5–5,0 мДж/м3 и пригоден для использования в ДВС и топочных устройствах.

В США и странах Евросоюза большое внимание уделяется вопросам утилизации и газификации биомассы, но лидерами в этом направлении становятся Китай и Индия.

В России многие районы недоступны для обеспечения их природным газом, а завоз туда жидкого топлива или угля связан с большими затратами. Оптимальный выход - использование установок по генерированию электроэнергии из биотоплива.

Серийные промышленные электроэнергетические газификационные системы "под ключ" на основе газогенераторов с кипящим слоем для сельскохозяйственных, зерноперерабатывающих, лесных и деревообрабатывающих предприятий производит, например, китайская компания Chongqing Fengyu Electric Equipment.

По предлагаемой компанией технологии измельченные и подсушенные отходы древесины, гидролизный лигнин, солома, рисовая и подсолнечная шелуха, стебли хлопчатника и т.п. из бункера подаются в газификационную колонну. Полученный синтетический газ охлаждается и очищается от пыли и дегтя и поступает в накопитель. Очистка и охлаждение газа осуществляется при помощи циркулирующей в системе оборотной воды. Газификационная установка принципиально проста по конструкции и относительно компактна. Охлаждение воды осуществляется в пруду или бассейне - охладителе. Полученный горючий синтетический газ направляется в газопоршневую установку (газогенератор) или используется на другие цели.

Г азификационные установки имеют высокую энергоэффективность. Так на выработку 1 кВт электроэнергии требуется примерно 1,3-1,8 кг рисовой шелухи (соломы) или 1,1 - 1,6 опилок или лигнина. Затраты на комплектное оборудование составляют менее 1000 долларов США на 1 кВт получаемой электрической мощности.

Состав генераторного газа

Состав генераторного газа получаемых из древесных и др. отходов в этих установках приведен в таблице:

Горючими компонентами генераторного газа являются окись углерода (СО), водород (H2), метан (CH4) и другие углеводороды (CmHn) . Калорийность получаемого синтетического газа зависит от вида используемого сырья и составляет 1100-1500 ккал/ м 3 (4.6~6.3 мДж). Например калорийность газа получаемого при переработке рисовой шелухи 1 393 ккал/м 3 (5.83 мДж/м 3);

Газогенерационные установки имеют различную единичную мощность в пределах от 200 до 1200 кВт и проверены во многих странах. В условиях КНР срок окупаемости этих энергоблоков составляет менее 2 лет.

Газификационные установки могут успешно применяться как при организации новых лесных и деревообрабатывающих предприятий, так и для модернизации действующих, в том числе в районах, удаленных от электрических и газовых сетей. Они могут быть интересны также для муниципалитетов, зерноочистительных и сельскохозяйственных предприятий.

Литература по газификации древесины и биомассы

По газификации древесины и биоресурсов написано много книг и статей, в т.ч. доступных в россисйкой и мировой сети. Ниже приведен небольшой перечень для начинающих: автор Абушенко А.В., май 2010
Загрузка...